Molecular CancerPub Date : 2024-11-01DOI: 10.1186/s12943-024-02161-1
Yujing Guan, Wei Zhang, Yuling Mao, Shenglong Li
{"title":"Nanoparticles and bone microenvironment: a comprehensive review for malignant bone tumor diagnosis and treatment","authors":"Yujing Guan, Wei Zhang, Yuling Mao, Shenglong Li","doi":"10.1186/s12943-024-02161-1","DOIUrl":"https://doi.org/10.1186/s12943-024-02161-1","url":null,"abstract":"Malignant bone tumors, which are difficult to treat with current clinical strategies, originate from bone tissues and can be classified into primary and secondary types. Due to the specificity of the bone microenvironment, the results of traditional means of treating bone tumors are often unsatisfactory, so there is an urgent need to develop new treatments for malignant bone tumors. Recently, nanoparticle-based approaches have shown great potential in diagnosis and treatment. Nanoparticles (NPs) have gained significant attention due to their versatility, making them highly suitable for applications in bone tissue engineering, advanced imaging techniques, and targeted drug delivery. For diagnosis, NPs enhance imaging contrast and sensitivity by integrating targeting ligands, which significantly improve the specific recognition and localization of tumor cells for early detection. For treatment, NPs enable targeted drug delivery, increasing drug accumulation at tumor sites while reducing systemic toxicity. In conclusion, understanding bone microenvironment and using the unique properties of NPs holds great promise in improving disease management, enhancing treatment outcomes, and ultimately improving the quality of life for patients with malignant bone tumors. Further research and development will undoubtedly contribute to the advancement of personalized medicine in the field of bone oncology.","PeriodicalId":19000,"journal":{"name":"Molecular Cancer","volume":"214 1","pages":""},"PeriodicalIF":37.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142562058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Overcoming multi-drug resistance in SCLC: a synergistic approach with venetoclax and hydroxychloroquine targeting the lncRNA LYPLAL1-DT/BCL2/BECN1 pathway.","authors":"Shuxin Li, Jianyi Lv, Zhihui Li, Qiuyu Zhang, Jing Lu, Xueyun Huo, Meng Guo, Xin Liu, Changlong Li, Jinghui Wang, Hanping Shi, Li Deng, Zhenwen Chen, Xiaoyan Du","doi":"10.1186/s12943-024-02145-1","DOIUrl":"10.1186/s12943-024-02145-1","url":null,"abstract":"<p><strong>Background: </strong>Small cell lung cancer (SCLC) stands as one of the most lethal malignancies, characterized by a grim diagnosis and prognosis. The emergence of multi-drug resistance poses a significant hurdle to effective therapy. Although previous studies have implicated the long noncoding RNA LYPLAL1-DT in the tumorigenesis of SCLC, the precise role of the highly expressed LYPLAL1-DT in SCLC chemoresistance and the underlying mechanism remain inadequately understood.</p><p><strong>Methods: </strong>cDDP-, VP-16- and PTX-resistant SCLC cells lines were established. The viabilities of SCLC cells were assessed by CCK-8 assay in vitro and xenograft tumor formation assay in vivo. Apoptosis was evaluated by FACS, Western blot and JC-1 fluorescence staining, while autophagy was explored via autophagic flux detection under confocal microscopy and autophagic vacuole investigation under transmission electron microscopy (TEM). The functional role and mechanism of LYPLAL1-DT were further investigated by gain- and loss-of-function assays in vitro. Furthermore, the therapeutic efficacy of the combination of venetoclax and HCQ with cDDP, VP-16 or PTX was evaluated by cell line, cell-derived xenograft (CDX) and patient-derived xenograft (PDX) mice model.</p><p><strong>Results: </strong>Our findings revealed that LYPLAL1-DT is upregulated in chemoresistant SCLC cell lines. Gain- and loss-of-function assays demonstrated that LYPLAL1-DT impairs sensitivity to cDDP, VP-16, or PTX both in vitro and in vivo. Overexpression of LYPLAL1-DT significantly enhanced autophagy and inhibited apoptosis in SCLC cells. Further analyses, including RIP and RNA pull-down assays, revealed that LYPLAL1-DT promotes the expression of BCL2 by sponging miR-204-5p and is implicated in the assembly of the autophagy-specific complex (BECN1/PtdIns3K complex). Combining venetoclax and HCQ with cDDP, VP-16, or PTX effectively mitigated chemoresistance in SCLC cells and suppressed tumor growth in CDX and PDX models without inducing obvious toxic effects.</p><p><strong>Conclusions: </strong>Our findings demonstrate that upregulation of LYPLAL1-DT sequesters apoptosis through the LYPLAL1-DT/miR-204-5p/BCL2 axis and promotes autophagy by facilitating the assembly of the BECN1/PtdIns3K complex, thereby mediating multi-drug resistance of SCLC. The triple combination of venetoclax, HCQ, in conjunction with cDDP, VP-16 or PTX overcomes refractory SCLC, shedding light on a potential therapeutic target for combating SCLC chemoresistance.</p>","PeriodicalId":19000,"journal":{"name":"Molecular Cancer","volume":"23 1","pages":"243"},"PeriodicalIF":27.7,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11526623/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142546489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Molecular CancerPub Date : 2024-10-31DOI: 10.1186/s12943-024-02163-z
Prashant Kesharwani, Kratika Halwai, Saurav Kumar Jha, Mohammed H Al Mughram, Salem Salman Almujri, Waleed H Almalki, Amirhossein Sahebkar
{"title":"Folate-engineered chitosan nanoparticles: next-generation anticancer nanocarriers.","authors":"Prashant Kesharwani, Kratika Halwai, Saurav Kumar Jha, Mohammed H Al Mughram, Salem Salman Almujri, Waleed H Almalki, Amirhossein Sahebkar","doi":"10.1186/s12943-024-02163-z","DOIUrl":"10.1186/s12943-024-02163-z","url":null,"abstract":"<p><p>Chitosan nanoparticles (NPs) are well-recognized as promising vehicles for delivering anticancer drugs due to their distinctive characteristics. They have the potential to enclose hydrophobic anticancer molecules, thereby enhancing their solubilities, permeabilities, and bioavailabilities; without the use of surfactant, i.e., through surfactant-free solubilization. This allows for higher drug concentrations at the tumor sites, prevents excessive toxicity imparted by surfactants, and could circumvent drug resistance. Moreover, biomedical engineers and formulation scientists can also fabricate chitosan NPs to slowly release anticancer agents. This keeps the drugs at the tumor site longer, makes therapy more effective, and lowers the frequency of dosing. Notably, some types of cancer cells (fallopian tube, epithelial tumors of the ovary, and primary peritoneum; lung, kidney, ependymal brain, uterus, breast, colon, and malignant pleural mesothelioma) have overexpression of folate receptors (FRs) on their outer surface, which lets folate-drug conjugate-incorporated NPs to target and kill them more effectively. Strikingly, there is evidence suggesting that the excessively produced FR&αgr (isoforms of the FR) stays consistent throughout treatment in ovarian and endometrial cancer, indicating resistance to conventional treatment; and in this regard, folate-anchored chitosan NPs can overcome it and improve the therapeutic outcomes. Interestingly, overly expressed FRs are present only in certain tumor types, which makes them a promising biomarker for predicting the effectiveness of FR-targeted therapy. On the other hand, the folate-modified chitosan NPs can also enhance the oral absorption of medicines, especially anticancer drugs, and pave the way for effective and long-term low-dose oral metronomic scheduling of poorly soluble and permeable drugs. In this review, we talked briefly about the techniques used to create, characterize, and tailor chitosan-based NPs; and delved deeper into the potential applications of folate-engineered chitosan NPs in treating various cancer types.</p>","PeriodicalId":19000,"journal":{"name":"Molecular Cancer","volume":"23 1","pages":"244"},"PeriodicalIF":27.7,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11526716/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142558293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Molecular CancerPub Date : 2024-10-31DOI: 10.1186/s12943-024-02114-8
Christina Sternberg, Martin Raigel, Tanja Limberger, Karolína Trachtová, Michaela Schlederer, Desiree Lindner, Petra Kodajova, Jiaye Yang, Roman Ziegler, Jessica Kalla, Stefan Stoiber, Saptaswa Dey, Daniela Zwolanek, Heidi A. Neubauer, Monika Oberhuber, Torben Redmer, Václav Hejret, Boris Tichy, Martina Tomberger, Nora S. Harbusch, Jan Pencik, Simone Tangermann, Vojtech Bystry, Jenny L. Persson, Gerda Egger, Sarka Pospisilova, Robert Eferl, Peter Wolf, Felix Sternberg, Sandra Högler, Sabine Lagger, Stefan Rose-John, Lukas Kenner
{"title":"Cell-autonomous IL6ST activation suppresses prostate cancer development via STAT3/ARF/p53-driven senescence and confers an immune-active tumor microenvironment","authors":"Christina Sternberg, Martin Raigel, Tanja Limberger, Karolína Trachtová, Michaela Schlederer, Desiree Lindner, Petra Kodajova, Jiaye Yang, Roman Ziegler, Jessica Kalla, Stefan Stoiber, Saptaswa Dey, Daniela Zwolanek, Heidi A. Neubauer, Monika Oberhuber, Torben Redmer, Václav Hejret, Boris Tichy, Martina Tomberger, Nora S. Harbusch, Jan Pencik, Simone Tangermann, Vojtech Bystry, Jenny L. Persson, Gerda Egger, Sarka Pospisilova, Robert Eferl, Peter Wolf, Felix Sternberg, Sandra Högler, Sabine Lagger, Stefan Rose-John, Lukas Kenner","doi":"10.1186/s12943-024-02114-8","DOIUrl":"https://doi.org/10.1186/s12943-024-02114-8","url":null,"abstract":"Prostate cancer ranks as the second most frequently diagnosed cancer in men worldwide. Recent research highlights the crucial roles IL6ST-mediated signaling pathways play in the development and progression of various cancers, particularly through hyperactivated STAT3 signaling. However, the molecular programs mediated by IL6ST/STAT3 in prostate cancer are poorly understood. To investigate the role of IL6ST signaling, we constitutively activated IL6ST signaling in the prostate epithelium of a Pten-deficient prostate cancer mouse model in vivo and examined IL6ST expression in large cohorts of prostate cancer patients. We complemented these data with in-depth transcriptomic and multiplex histopathological analyses. Genetic cell-autonomous activation of the IL6ST receptor in prostate epithelial cells triggers active STAT3 signaling and significantly reduces tumor growth in vivo. Mechanistically, genetic activation of IL6ST signaling mediates senescence via the STAT3/ARF/p53 axis and recruitment of cytotoxic T-cells, ultimately impeding tumor progression. In prostate cancer patients, high IL6ST mRNA expression levels correlate with better recurrence-free survival, increased senescence signals and a transition from an immune-cold to an immune-hot tumor. Our findings demonstrate a context-dependent role of IL6ST/STAT3 in carcinogenesis and a tumor-suppressive function in prostate cancer development by inducing senescence and immune cell attraction. We challenge the prevailing concept of blocking IL6ST/STAT3 signaling as a functional prostate cancer treatment and instead propose cell-autonomous IL6ST activation as a novel therapeutic strategy.","PeriodicalId":19000,"journal":{"name":"Molecular Cancer","volume":"16 1","pages":""},"PeriodicalIF":37.3,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142555945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Molecular CancerPub Date : 2024-10-30DOI: 10.1186/s12943-024-02164-y
Jing Yan, Di Chen, Zi Ye, Xuqiang Zhu, Xueyuan Li, Henan Jiao, Mengjiao Duan, Chaoli Zhang, Jingliang Cheng, Lixia Xu, Hongjiang Li, Dongming Yan
{"title":"Molecular mechanisms and therapeutic significance of Tryptophan Metabolism and signaling in cancer","authors":"Jing Yan, Di Chen, Zi Ye, Xuqiang Zhu, Xueyuan Li, Henan Jiao, Mengjiao Duan, Chaoli Zhang, Jingliang Cheng, Lixia Xu, Hongjiang Li, Dongming Yan","doi":"10.1186/s12943-024-02164-y","DOIUrl":"https://doi.org/10.1186/s12943-024-02164-y","url":null,"abstract":"Tryptophan (Trp) metabolism involves three primary pathways: the kynurenine (Kyn) pathway (KP), the 5-hydroxytryptamine (serotonin, 5-HT) pathway, and the indole pathway. Under normal physiological conditions, Trp metabolism plays crucial roles in regulating inflammation, immunity, and neuronal function. Key rate-limiting enzymes such as indoleamine-2,3-dioxygenase (IDO), Trp-2,3-dioxygenase (TDO), and kynurenine monooxygenase (KMO) drive these metabolic processes. Imbalances in Trp metabolism are linked to various cancers and often correlate with poor prognosis and adverse clinical characteristics. Dysregulated Trp metabolism fosters tumor growth and immune evasion primarily by creating an immunosuppressive tumor microenvironment (TME). Activation of the KP results in the production of immunosuppressive metabolites like Kyn, which modulate immune responses and promote oncogenesis mainly through interaction with the aryl hydrocarbon receptor (AHR). Targeting Trp metabolism therapeutically has shown significant potential, especially with the development of small-molecule inhibitors for IDO1, TDO, and other key enzymes. These inhibitors disrupt the immunosuppressive signals within the TME, potentially restoring effective anti-tumor immune responses. Recently, IDO1 inhibitors have been tested in clinical trials, showing the potential to enhance the effects of existing cancer therapies. However, mixed results in later-stage trials underscore the need for a deeper understanding of Trp metabolism and its complex role in cancer. Recent advancements have also explored combining Trp metabolism inhibitors with other treatments, such as immune checkpoint inhibitors, chemotherapy, and radiotherapy, to enhance therapeutic efficacy and overcome resistance mechanisms. This review summarizes the current understanding of Trp metabolism and signaling in cancer, detailing the oncogenic mechanisms and clinical significance of dysregulated Trp metabolism. Additionally, it provides insights into the challenges in developing Trp-targeted therapies and future research directions aimed at optimizing these therapeutic strategies and improving patient outcomes.","PeriodicalId":19000,"journal":{"name":"Molecular Cancer","volume":"17 1","pages":""},"PeriodicalIF":37.3,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142541573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Molecular CancerPub Date : 2024-10-30DOI: 10.1186/s12943-024-02147-z
Clare E. Murray, Anand V. R. Kornepati, Carlos Ontiveros, Yiji Liao, Bárbara de la Peña Avalos, Cody M. Rogers, Zexuan Liu, Yilun Deng, Haiyan Bai, Suresh Kari, Alvaro S. Padron, Jacob T. Boyd, Ryan Reyes, Curtis A. Clark, Robert S. Svatek, Rong Li, Yanfen Hu, Meiling Wang, José R. Conejo-Garcia, Lauren A. Byers, Kavya Ramkumar, Anil K. Sood, Jung-Min Lee, Christin E. Burd, Ratna K. Vadlamudi, Harshita B. Gupta, Weixing Zhao, Eloïse Dray, Patrick Sung, Tyler J. Curiel
{"title":"Tumour-intrinsic PDL1 signals regulate the Chk2 DNA damage response in cancer cells and mediate resistance to Chk1 inhibitors","authors":"Clare E. Murray, Anand V. R. Kornepati, Carlos Ontiveros, Yiji Liao, Bárbara de la Peña Avalos, Cody M. Rogers, Zexuan Liu, Yilun Deng, Haiyan Bai, Suresh Kari, Alvaro S. Padron, Jacob T. Boyd, Ryan Reyes, Curtis A. Clark, Robert S. Svatek, Rong Li, Yanfen Hu, Meiling Wang, José R. Conejo-Garcia, Lauren A. Byers, Kavya Ramkumar, Anil K. Sood, Jung-Min Lee, Christin E. Burd, Ratna K. Vadlamudi, Harshita B. Gupta, Weixing Zhao, Eloïse Dray, Patrick Sung, Tyler J. Curiel","doi":"10.1186/s12943-024-02147-z","DOIUrl":"https://doi.org/10.1186/s12943-024-02147-z","url":null,"abstract":"Aside from the canonical role of PDL1 as a tumour surface-expressed immune checkpoint molecule, tumour-intrinsic PDL1 signals regulate non-canonical immunopathological pathways mediating treatment resistance whose significance, mechanisms, and therapeutic targeting remain incompletely understood. Recent reports implicate tumour-intrinsic PDL1 signals in the DNA damage response (DDR), including promoting homologous recombination DNA damage repair and mRNA stability of DDR proteins, but many mechanistic details remain undefined. We genetically depleted PDL1 from transplantable mouse and human cancer cell lines to understand consequences of tumour-intrinsic PDL1 signals in the DNA damage response. We complemented this work with studies of primary human tumours and inducible mouse tumours. We developed novel approaches to show tumour-intrinsic PDL1 signals in specific subcellular locations. We pharmacologically depleted tumour PDL1 in vivo in mouse models with repurposed FDA-approved drugs for proof-of-concept clinical translation studies. We show that tumour-intrinsic PDL1 promotes the checkpoint kinase-2 (Chk2)-mediated DNA damage response. Intracellular but not surface-expressed PDL1 controlled Chk2 protein content post-translationally and independently of PD1 by antagonising PIRH2 E3 ligase-mediated Chk2 polyubiquitination and protein degradation. Genetic tumour PDL1 depletion specifically reduced tumour Chk2 content but not ATM, ATR, or Chk1 DDR proteins, enhanced Chk1 inhibitor (Chk1i) synthetic lethality in vitro in diverse human and murine tumour models, and improved Chk1i efficacy in vivo. Pharmacologic tumour PDL1 depletion with cefepime or ceftazidime replicated genetic tumour PDL1 depletion by reducing tumour Chk2, inducing Chk1i synthetic lethality in a tumour PDL1-dependent manner, and reducing in vivo tumour growth when combined with Chk1i. Our data challenge the prevailing surface PDL1 paradigm, elucidate important and previously unappreciated roles for tumour-intrinsic PDL1 in regulating the ATM/Chk2 DNA damage response axis and E3 ligase-mediated protein degradation, suggest tumour PDL1 as a biomarker for Chk1i efficacy, and support the rapid clinical potential of pharmacologic tumour PDL1 depletion to treat selected cancers.","PeriodicalId":19000,"journal":{"name":"Molecular Cancer","volume":"5 1","pages":""},"PeriodicalIF":37.3,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142541566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Combined targeting of GPX4 and BCR-ABL tyrosine kinase selectively compromises BCR-ABL+ leukemia stem cells.","authors":"Chengwu Zeng, Dingrui Nie, Xianfeng Wang, Shuxin Zhong, Xiangbo Zeng, Xin Liu, Kangjie Qiu, Xueting Peng, Wenyi Zhang, Shengting Chen, Xianfeng Zha, Cunte Chen, Zhenhua Chen, Weizhang Wang, Yangqiu Li","doi":"10.1186/s12943-024-02162-0","DOIUrl":"10.1186/s12943-024-02162-0","url":null,"abstract":"<p><strong>Background: </strong>In the ongoing battle against BCR-ABL+ leukemia, despite significant advances with tyrosine kinase inhibitors (TKIs), the persistent challenges of drug resistance and the enduring presence of leukemic stem cells (LSCs) remain formidable barriers to achieving a cure.</p><p><strong>Methods: </strong>In this study, we demonstrated that Disulfiram (DSF) induces ferroptosis to synergize with TKIs in inhibiting BCR-ABL+ cells, particularly targeting resistant cells and LSCs, using cell models, mouse models, and primary cells from patients. We elucidated the mechanism by which DSF promotes GPX4 degradation to induce ferroptosis through immunofluorescence, co-immunoprecipitation (CO-IP), RNA sequencing, lipid peroxidation assays, and rescue experiments.</p><p><strong>Results: </strong>Here, we present compelling evidence elucidating the sensitivity of DSF, an USA FDA-approved drug for alcohol dependence, towards BCR-ABL+ cells. Our findings underscore DSF's ability to selectively induce a potent cytotoxic effect on BCR-ABL+ cell lines and effectively inhibit primary BCR-ABL+ leukemia cells. Crucially, the combined treatment of DSF with TKIs selectively eradicates TKI-insensitive stem cells and resistant cells. Of particular note is DSF's capacity to disrupt GPX4 stability, elevate the labile iron pool, and intensify lipid peroxidation, ultimately leading to ferroptotic cell death. Our investigation shows that BCR-ABL expression induces alterations in cellular iron metabolism and increases GPX4 expression. Additionally, we demonstrate the indispensability of GPX4 for LSC development and the initiation/maintenance of BCR-ABL+ leukemia. Mechanical analysis further elucidates DSF's capacity to overcome resistance by reducing GPX4 levels through the disruption of its binding with HSPA8, thereby promoting STUB1-mediated GPX4 ubiquitination and subsequent proteasomal degradation. Furthermore, the combined treatment of DSF with TKIs effectively targets both BCR-ABL+ blast cells and drug-insensitive LSCs, conferring a significant survival advantage in mouse models.</p><p><strong>Conclusion: </strong>In summary, the dual inhibition of GPX4 and BCR-ABL presents a promising therapeutic strategy to synergistically target blast cells and drug-insensitive LSCs in patients, offering potential avenues for advancing leukemia treatment.</p>","PeriodicalId":19000,"journal":{"name":"Molecular Cancer","volume":"23 1","pages":"240"},"PeriodicalIF":27.7,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11514791/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142504546","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Molecular CancerPub Date : 2024-10-24DOI: 10.1186/s12943-024-02155-z
Feng Qi, Na Gao, Jia Li, Chenfei Zhou, Jinling Jiang, Bin Zhou, Liting Guo, Xiaohui Feng, Jun Ji, Qu Cai, Liu Yang, Rongjia Zhu, Xinyi Que, Junwei Wu, Wenqi Xi, Wenxing Qin, Jun Zhang
{"title":"A multidimensional recommendation framework for identifying biological targets to aid the diagnosis and treatment of liver metastasis in patients with colorectal cancer","authors":"Feng Qi, Na Gao, Jia Li, Chenfei Zhou, Jinling Jiang, Bin Zhou, Liting Guo, Xiaohui Feng, Jun Ji, Qu Cai, Liu Yang, Rongjia Zhu, Xinyi Que, Junwei Wu, Wenqi Xi, Wenxing Qin, Jun Zhang","doi":"10.1186/s12943-024-02155-z","DOIUrl":"https://doi.org/10.1186/s12943-024-02155-z","url":null,"abstract":"The quest to understand the molecular mechanisms of tumour metastasis and identify pivotal biomarkers for cancer therapy is increasing in importance. Single-omics analyses, constrained by their focus on a single biological layer, cannot fully elucidate the complexities of tumour molecular profiles and can thus overlook crucial molecular targets. In response to this limitation, we developed a multiobjective recommendation system (RJH-Metastasis 1.0) anchored in a multiomics knowledge graph to integrate genome, transcriptome, and proteome data and corroborative literature evidence and then conducted comprehensive analyses of colorectal cancer with liver metastasis (CRCLM). A total of 25 key genes significantly associated with CRCLM were recommended by our system, and GNB1, GATAD2A, GBP2, MACROD1, and EIF5B were further highlighted. Specifically, GNB1 presented fewer mutations but elevated RNA transcription and protein expression in CRCLM patients. The role of GNB1 in promoting the malignant behaviours of colon cancer cells was demonstrated via in vitro and in vivo studies. Aberrant expression of GNB1 could be regulated by METTL1-driven m7G modification. METTL1 knockdown decreased m7G modification in the 3’ UTR of GNB1, increasing its mRNA transcription and translation during liver metastasis. Furthermore, GNB1 induced the formation of an immunosuppressive microenvironment by promoting the CLEC2C-KLRB1 interaction between memory B cells and KLRB1+PD-1+CD8+ cells. GNB1 expression and the efficacy of PD-1 antibody-based treatment in CRCLM patients were significantly correlated. In summary, our recommendation system can be used for effective exploration of key molecules in colorectal cancer, among which GNB1 was identified as a critical CRCLM promoter and immunotherapy biomarker in colorectal cancer patients.","PeriodicalId":19000,"journal":{"name":"Molecular Cancer","volume":"90 1","pages":""},"PeriodicalIF":37.3,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142488734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"CAR-NK cells for gastrointestinal cancer immunotherapy: from bench to bedside","authors":"Xingwang Zhu, Jieyun Xue, Hongzhou Jiang, Dongwei Xue","doi":"10.1186/s12943-024-02151-3","DOIUrl":"https://doi.org/10.1186/s12943-024-02151-3","url":null,"abstract":"Gastrointestinal (GI) cancers represent a significant health burden worldwide. Their incidence continues to increase, and their management remains a clinical challenge. Chimeric antigen receptor (CAR) natural killer (NK) cells have emerged as a promising alternative to CAR-T cells for immunotherapy of GI cancers. Notably, CAR-NK cells offer several advantages, including reduced risk of graft-versus-host disease, lower cytokine release syndrome, and the ability to target cancer cells through both CAR-dependent and natural cytotoxic mechanisms. This review comprehensively discusses the development and applications of CAR-NK cells in the treatment of GI cancers. We explored various sources of NK cells, CAR design strategies, and the current state of CAR-NK cell therapy for GI cancers, highlighting recent preclinical and clinical trials. Additionally, we addressed existing challenges and propose potential strategies to enhance the efficacy and safety of CAR-NK cell therapy. Our findings highlight the potential of CAR-NK cells to revolutionize GI cancer treatment and pave the way for future clinical applications.","PeriodicalId":19000,"journal":{"name":"Molecular Cancer","volume":"42 1","pages":""},"PeriodicalIF":37.3,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142487523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Molecular CancerPub Date : 2024-10-23DOI: 10.1186/s12943-024-02118-4
Akram Ghantous, Semira Gonseth Nusslé, Farah J. Nassar, Natalia Spitz, Alexei Novoloaca, Olga Krali, Eric Nickels, Vincent Cahais, Cyrille Cuenin, Ritu Roy, Shaobo Li, Maxime Caron, Dilys Lam, Peter Daniel Fransquet, John Casement, Gordon Strathdee, Mark S. Pearce, Helen M. Hansen, Hwi-Ho Lee, Yong Sun Lee, Adam J. de Smith, Daniel Sinnett, Siri Eldevik Håberg, Jill A. McKay, Jessica Nordlund, Per Magnus, Terence Dwyer, Richard Saffery, Joseph Leo Wiemels, Monica Cheng Munthe-Kaas, Zdenko Herceg
{"title":"Epigenome-wide analysis across the development span of pediatric acute lymphoblastic leukemia: backtracking to birth","authors":"Akram Ghantous, Semira Gonseth Nusslé, Farah J. Nassar, Natalia Spitz, Alexei Novoloaca, Olga Krali, Eric Nickels, Vincent Cahais, Cyrille Cuenin, Ritu Roy, Shaobo Li, Maxime Caron, Dilys Lam, Peter Daniel Fransquet, John Casement, Gordon Strathdee, Mark S. Pearce, Helen M. Hansen, Hwi-Ho Lee, Yong Sun Lee, Adam J. de Smith, Daniel Sinnett, Siri Eldevik Håberg, Jill A. McKay, Jessica Nordlund, Per Magnus, Terence Dwyer, Richard Saffery, Joseph Leo Wiemels, Monica Cheng Munthe-Kaas, Zdenko Herceg","doi":"10.1186/s12943-024-02118-4","DOIUrl":"https://doi.org/10.1186/s12943-024-02118-4","url":null,"abstract":"Cancer is the leading cause of disease-related mortality in children. Causes of leukemia, the most common form, are largely unknown. Growing evidence points to an origin in-utero, when global redistribution of DNA methylation occurs driving tissue differentiation. Epigenome-wide DNA methylation was profiled in surrogate (blood) and target (bone marrow) tissues at birth, diagnosis, remission and relapse of pediatric pre-B acute lymphoblastic leukemia (pre-B ALL) patients. Double-blinded analyses was performed between prospective cohorts extending from birth to diagnosis and retrospective studies backtracking from clinical disease to birth. Validation was carried out using independent technologies and populations. The imprinted and immuno-modulating VTRNA2-1 was hypermethylated (FDR<0.05) at birth in nested cases relative to controls in all tested populations (totaling 317 cases and 483 controls), including European and Hispanic ancestries. VTRNA2-1 methylation was stable over follow-up years after birth and across surrogate, target and other tissues (n=5,023 tissues; 30 types). When profiled in leukemic tissues from two clinical cohorts (totaling 644 cases), VTRNA2-1 methylation exhibited higher levels at diagnosis relative to controls, it reset back to normal levels at remission, and then re-increased to above control levels at relapse. Hypermethylation was significantly associated with worse pre-B ALL patient survival and with reduced VTRNA2-1 expression (n=2,294 tissues; 26 types), supporting a functional and translational role for VTRNA2-1 methylation. This study provides proof-of-concept to detect at birth epigenetic precursors of pediatric pre-B ALL. These alterations were reproducible with different technologies, in three continents and in two ethnicities, and can offer biomarkers for early detection and prognosis as well as actionable targets for therapy. • Precursors of pediatric acute lymphoblastic leukemia may be of epigenetic origin, detectable since birth and affecting patient prognosis. • These epigenetic precursors can be robust over several years and across several populations, ethnicities and surrogate and target tissues.","PeriodicalId":19000,"journal":{"name":"Molecular Cancer","volume":"31 1","pages":""},"PeriodicalIF":37.3,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142488736","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}