Dong Luo, Qizhen Chen, Yixiong Li, Jianbo Yang, Yongguang Tao, Liandong Ji, Xuejun Gong
{"title":"Microbiome-metabolome interplay in pancreatic cancer progression: insights from multi-omics analysis","authors":"Dong Luo, Qizhen Chen, Yixiong Li, Jianbo Yang, Yongguang Tao, Liandong Ji, Xuejun Gong","doi":"10.1186/s12943-025-02458-9","DOIUrl":null,"url":null,"abstract":"Recent studies suggest that intratumoral microbiome and altered metabolic networks play crucial roles in pancreatic cancer (PC) progression. However, the precise interplay between microbial communities and tumor metabolism in PC remains poorly understood. This study aims to investigate the impact of the intratumoral microbiome, the metabolic landscape, and their interactions on PC development. 16S rDNA sequencing and Untargeted metabolomic profiling were performed on 47 paired pancreatic cancer and adjacent normal tissues to analyze their intratumoral microbiome and metabolic landscapes. Bioinformatics tools were used to conduct differential microbiome abundance analysis and pathway enrichment. A correlation analysis was performed to identify key microbiota-metabolite interactions. 16S rDNA sequencing revealed significant differences in the abundance and diversity (α-diversity and β-diversity) of the intratumoral microbiome in PC. The predominant species in pancreatic cancer were Pseudomonas. Enrichment analysis showed that amino acid metabolic pathways, including Arginine and Proline Metabolism, Arginine Biosynthesis, were significantly enriched in PC. Untargeted metabolomics identified 298 metabolites that were significantly altered in PC (fold change > 1.5, P-value < 0.05). These included amino acid metabolites such as Lys-Leu, Pro-Leu, Arg-Leu, Lys-Val, His-Lys, and others. Functional enrichment analysis highlighted several metabolic pathways that play important roles in pancreatic cancer, including Glycine, Serine, and Threonine Metabolism, Amino Acid Biosynthesis, Metabolic Pathways and Cysteine and Methionine Metabolism. Correlation analysis between microbiome and metabolic data revealed significant associations between Pseudomonas and several metabolites, including Alpha-ketoisovaleric acid, 16-hydroxyhexadecanoic acid, Myristic acid, Nonanoic acid (the Spearman correlation coefficient r, 0.5 ≤|r|≤ 1 and P-value < 0.05). This study suggests a relationship between the microbiome and metabolism in pancreatic cancer. We observed that Pseudomonas contributes to altered amino acid metabolism, but whether this interaction is causal and the mechanisms underlying it remain unclear. Further experimental validation is required before considering microbiome-targeted metabolic interventions as viable therapeutic strategies.","PeriodicalId":19000,"journal":{"name":"Molecular Cancer","volume":"75 1","pages":""},"PeriodicalIF":33.9000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12943-025-02458-9","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Recent studies suggest that intratumoral microbiome and altered metabolic networks play crucial roles in pancreatic cancer (PC) progression. However, the precise interplay between microbial communities and tumor metabolism in PC remains poorly understood. This study aims to investigate the impact of the intratumoral microbiome, the metabolic landscape, and their interactions on PC development. 16S rDNA sequencing and Untargeted metabolomic profiling were performed on 47 paired pancreatic cancer and adjacent normal tissues to analyze their intratumoral microbiome and metabolic landscapes. Bioinformatics tools were used to conduct differential microbiome abundance analysis and pathway enrichment. A correlation analysis was performed to identify key microbiota-metabolite interactions. 16S rDNA sequencing revealed significant differences in the abundance and diversity (α-diversity and β-diversity) of the intratumoral microbiome in PC. The predominant species in pancreatic cancer were Pseudomonas. Enrichment analysis showed that amino acid metabolic pathways, including Arginine and Proline Metabolism, Arginine Biosynthesis, were significantly enriched in PC. Untargeted metabolomics identified 298 metabolites that were significantly altered in PC (fold change > 1.5, P-value < 0.05). These included amino acid metabolites such as Lys-Leu, Pro-Leu, Arg-Leu, Lys-Val, His-Lys, and others. Functional enrichment analysis highlighted several metabolic pathways that play important roles in pancreatic cancer, including Glycine, Serine, and Threonine Metabolism, Amino Acid Biosynthesis, Metabolic Pathways and Cysteine and Methionine Metabolism. Correlation analysis between microbiome and metabolic data revealed significant associations between Pseudomonas and several metabolites, including Alpha-ketoisovaleric acid, 16-hydroxyhexadecanoic acid, Myristic acid, Nonanoic acid (the Spearman correlation coefficient r, 0.5 ≤|r|≤ 1 and P-value < 0.05). This study suggests a relationship between the microbiome and metabolism in pancreatic cancer. We observed that Pseudomonas contributes to altered amino acid metabolism, but whether this interaction is causal and the mechanisms underlying it remain unclear. Further experimental validation is required before considering microbiome-targeted metabolic interventions as viable therapeutic strategies.
期刊介绍:
Molecular Cancer is a platform that encourages the exchange of ideas and discoveries in the field of cancer research, particularly focusing on the molecular aspects. Our goal is to facilitate discussions and provide insights into various areas of cancer and related biomedical science. We welcome articles from basic, translational, and clinical research that contribute to the advancement of understanding, prevention, diagnosis, and treatment of cancer.
The scope of topics covered in Molecular Cancer is diverse and inclusive. These include, but are not limited to, cell and tumor biology, angiogenesis, utilizing animal models, understanding metastasis, exploring cancer antigens and the immune response, investigating cellular signaling and molecular biology, examining epidemiology, genetic and molecular profiling of cancer, identifying molecular targets, studying cancer stem cells, exploring DNA damage and repair mechanisms, analyzing cell cycle regulation, investigating apoptosis, exploring molecular virology, and evaluating vaccine and antibody-based cancer therapies.
Molecular Cancer serves as an important platform for sharing exciting discoveries in cancer-related research. It offers an unparalleled opportunity to communicate information to both specialists and the general public. The online presence of Molecular Cancer enables immediate publication of accepted articles and facilitates the presentation of large datasets and supplementary information. This ensures that new research is efficiently and rapidly disseminated to the scientific community.