A. H. Orta, Shain Azadi, S. Hedayatrasa, N. Roozen, W. Van Paepegem, M. Kersemans, K. Van Den Abeele
{"title":"Identification of the Orthotropic Elastic Tensor of Composites Using Full Field Lamb Wave Energy Velocities and Dispersion Curves","authors":"A. H. Orta, Shain Azadi, S. Hedayatrasa, N. Roozen, W. Van Paepegem, M. Kersemans, K. Van Den Abeele","doi":"10.1115/qnde2021-75067","DOIUrl":"https://doi.org/10.1115/qnde2021-75067","url":null,"abstract":"\u0000 A multi-objective inversion procedure is proposed based on 3D Lamb wave dispersion curves and energy velocity matching to identify the elastic stiffness tensor of orthotropic composite plates. To validate the procedure, finite element model simulations and experimental measurements have been conducted on an aluminum and a composite plate by using piezoelectric actuator broadband signals. Experimentally, the in-plane and out-of-plane velocity components on the surface of these plates were measured using a 3D Infrared Scanning Laser Doppler Vibrometer. By exploiting Fourier Transform, the measured space-time domain data is converted into the frequency-wavenumber domain, from which dispersion curves are extracted. To identify the energy velocity, Short Time Fourier Transform and linear Radon transformation have been applied. Then, image processing is used both for dispersion and energy velocity curves to match the amplitude of the in-plane and out-of-plane velocities on the surface of the plate. The Semi Analytical Finite Element method (SAFE) was selected as the forward model to be embedded in an inversion algorithm due to its accuracy and robustness. Using a multi-objective genetic algorithm, the elastic tensor is calculated by simultaneously minimizing the error between (i) the measured and calculated dispersion curves on one hand, and (ii) the measured and calculated energy velocity slowness curves on the other hand for every in and out of plane velocity measurement. The mean values of the pareto front are selected as optimum parameters. The reconstructed elastic stiffness properties show good agreement with less than 6% average deviation.","PeriodicalId":189764,"journal":{"name":"2021 48th Annual Review of Progress in Quantitative Nondestructive Evaluation","volume":"10 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132812122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Roberts, Charles D'Ambra, Jason Schibler, M. Manuel, T. Krause, Aroba Saleem
{"title":"Evaluating Temper Embrittlement in HY-80 Steel Using Magnetic Barkhausen Noise and Microstructural Characterization","authors":"M. Roberts, Charles D'Ambra, Jason Schibler, M. Manuel, T. Krause, Aroba Saleem","doi":"10.1115/qnde2021-75000","DOIUrl":"https://doi.org/10.1115/qnde2021-75000","url":null,"abstract":"\u0000 HY80 steel is a low-carbon steel known for embodying high strength and toughness properties. This steel is used in submarine applications. Temper embrittlement, which is the reduction of fracture toughness, occurs in steels when subject to aging and drastic temperature fluctuations. These changes occur in submarines over time while in underwater environments. During temper embrittlement, impurity atoms and carbides migrate to grain boundaries, which make the steel more susceptible to fracture. A non-destructive testing (NDT) method is desirable to assess the temper embrittlement damage in HY80. Magnetic Barkhausen Noise (MBN) is of interest as being a potential NDT method for analyzing HY80. Focusing on microstructural characterization and its effect on MBN could have implications for establishing an MBN based method to detect varied stages of temper embrittlement in HY80 steel. In this research, samples of HY80 were prepared and heat treated for 16–336 hours to mimic various degrees of temper embrittlement. Microstructural changes with heat treatment were characterized and connected to the MBN produced at each holding time. Methods consisted of performing scanning electron microscopy (SEM) and using an MBN measurement system. It was observed that as holding time increases, grain size increases and carbide density within the grains decreases. These carbides, which act as pinning sites, make it more difficult for domain walls to move, consequently affecting MBN energy.","PeriodicalId":189764,"journal":{"name":"2021 48th Annual Review of Progress in Quantitative Nondestructive Evaluation","volume":"2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134397795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pradeep Kumar, Mohamed Subair Syed Akbar Ali, P. Rajagopal
{"title":"Studies on Novel Hyperlens Concept for Ultrasonic Non Destructive Evaluation","authors":"Pradeep Kumar, Mohamed Subair Syed Akbar Ali, P. Rajagopal","doi":"10.1115/qnde2021-76072","DOIUrl":"https://doi.org/10.1115/qnde2021-76072","url":null,"abstract":"\u0000 Ultrasonic imaging is widely preferred in the field of non-destructive evaluation, medical diagnostics, and underwater inspection because it offers various advantages such as safety and versatility. However, conventional ultrasonic imaging methods suffer from the poor resolution limit imposed by the loss of information on fine features within the near-field. Metamaterial concepts have attracted much research interest in recent years, yielding extraordinary benefits such as super-resolution imaging, vibration damping, and cloaking. In the context of imaging, Metalenses allow the successful transfer of the information carried by the evanescent waves to far-field by amplifying them and hence help in overcoming the resolution limit. Hyperlenses enable subwavelength resolution along with spatial magnification by transforming evanescent waves scattered past a material artifact into propagating waves at the far-field ‘imaging’ end of the medium. This paper discusses novel radially symmetric ultrasonic hyperlens for imaging defects in the context of non-destructive evaluation, a topic that has not been studied much. The effect of parameters such as defect extent and distance between the lens on the subwavelength imaging of the hyperlens is studied using numerical simulations. This study investigates the magnification achievable using the proposed hyperlens and the effectiveness of this approach for nondestructive evaluation using cost-effective ‘everyday’ transducers.","PeriodicalId":189764,"journal":{"name":"2021 48th Annual Review of Progress in Quantitative Nondestructive Evaluation","volume":"21 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132443389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Peter Lukacs, Geo Davis, T. Stratoudaki, Y. Javadi, G. Pierce, A. Gachagan
{"title":"Remote, Volumetric Ultrasonic Imaging of Defects Using Two-Dimensional Laser Induced Phased Arrays","authors":"Peter Lukacs, Geo Davis, T. Stratoudaki, Y. Javadi, G. Pierce, A. Gachagan","doi":"10.1115/qnde2021-74694","DOIUrl":"https://doi.org/10.1115/qnde2021-74694","url":null,"abstract":"\u0000 Manufacturing processes, such as welding and additive manufacturing, take place at high temperatures and extreme environments that offer significant challenges to conventional non-destructive testing methods. Laser Induced Phased Arrays (LIPAs) have evolved as a promising testing method for the aforesaid applications due to its remote and couplant free operation. Contrary to transducer-based phased arrays, LIPAs are synthesized in post-processing by scanning the generation and detection lasers. The data from one-dimensional (1D) phased arrays are used to produce two-dimensional (2D), cross-sectional images, whereas the data from two-dimensional phased arrays generate three-dimensional (3D) images, thus providing more information on defect characterization. In this work, two-dimensional (2D) LIPAs are synthesized in the non-destructive thermoelastic regime using lasers for ultrasonic generation and detection, in order to image defects at different depths inside an aluminum sample. The acquired data is processed using the Total Focusing Method (TFM) algorithm to obtain volumetric images representing the interior of the sample. A 3D finite element (FE) model is also developed to support the experiments.","PeriodicalId":189764,"journal":{"name":"2021 48th Annual Review of Progress in Quantitative Nondestructive Evaluation","volume":"49 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116612006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Evaluating the Degree of Nonlinearity by Applying the Nonlinear SPC-I Technique in the FEM Simulation of Materials With Breathing Cracks","authors":"Sehyuk Park, H. Alnuaimi, U. Amjad, T. Kundu","doi":"10.1115/qnde2021-74617","DOIUrl":"https://doi.org/10.1115/qnde2021-74617","url":null,"abstract":"\u0000 Detecting internal defects such as fatigue cracks in their early stages is critically important to avoid catastrophic failures. However, detection of micro-scale defects poses a challenge to NDT/SHM (Non-Destructive Testing & Structural Health Monitoring) community. Conventional linear ultrasonic techniques that use absolute time of flight and attenuation to monitor damage progression encounter difficulty in detecting small defects. On the other hand, nonlinear ultrasonic techniques have been proven to be more reliable and sensitive to micro-scale defects. This study uses the nonlinear Sideband Peak Count Index (SPC-I) technique to evaluate the nonlinearity of the material. The problem is simulated using the finite element method (FEM). Fatigue cracks are simulated as breathing cracks. The problem is modeled as an infinite medium to minimize the geometrical effects such as reflections from the boundaries. A narrow band signal is excited and propagated through the material in a single sided excitation/detection setup. The degree of nonlinearity caused by breathing cracks is investigated for multiple configurations. First, the problem is modeled with no cracks to be taken as a reference condition. Then thick crack and thin crack (breathing crack) are modeled, analyzed, and compared. Finally, problems with different number of breathing cracks are simulated and analyzed. All simulated results are compared to investigate the dependence of the degree of nonlinearity on the density and orientation of the cracks.","PeriodicalId":189764,"journal":{"name":"2021 48th Annual Review of Progress in Quantitative Nondestructive Evaluation","volume":"20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122328548","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Magnetic Methods for the Identification of Incorrect Microstructures in Grade 91 Power Station Steels","authors":"John W. Wilson, A. Peyton","doi":"10.1115/qnde2021-74928","DOIUrl":"https://doi.org/10.1115/qnde2021-74928","url":null,"abstract":"\u0000 Grade 91 steels have been used in power generation for more than 20 years in high temperature, high pressure applications such as steam piping, headers and tubing because it provides superior creep and oxidation resistance at elevated temperatures. The mechanical properties of the material are dependent on the creation of a martensitic microstructure, however incorrect heat treatment during manufacture, installation or repair can result in a weak ferritic or semi-ferritic microstructure which can cause premature component failure. Currently, components with incorrect, weak microstructures are identified using hardness testing; a manual technique which is prone to error. This work details a series of tests carried out at the University of Manchester to assess the suitability of multi-parameter magnetic testing for the identification of incorrect microstructures. The tests stem from a workshop organized by the Electric Power Research Institute (EPRI) where three sets of samples (eight pipe sections, eight tube sections and eight unidentified tube sections) with different microstructures were circulated world-wide. The results of the work show that the magnetic measurement techniques employed in these tests have the potential to provide a basis for the development of a portable NDE system for the identification of incorrect microstructures in Grade 91 plant components. The developed system would enable fast scanning of components with very little surface preparation along with digital data storage, improving on current manual hardness testing.","PeriodicalId":189764,"journal":{"name":"2021 48th Annual Review of Progress in Quantitative Nondestructive Evaluation","volume":"73 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127398697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Julian Ehrler, A. Solodov, Y. Bernhardt, M. Kreutzbruck
{"title":"Nondestructive Evaluation of Materials Tensile Strength via Nonlinear Acoustics Data","authors":"Julian Ehrler, A. Solodov, Y. Bernhardt, M. Kreutzbruck","doi":"10.1115/qnde2021-75235","DOIUrl":"https://doi.org/10.1115/qnde2021-75235","url":null,"abstract":"\u0000 The nonlinear acoustic approach is assessed for applications as a nondestructive tool for reconstructing stress-strain curves and quantifying the ultimate tensile strength for variety of materials. The direct algorithm uses the polynomial stress-strain expansion up to the third power of strain and the literature data on the second-order nonlinearity parameters to calculate relevant segments of the stress-strain curves. Since the third-order nonlinearity parameters are unknown for majority of materials the calculations used an iteration scheme to obtain closer approximations to the experimental data available from static tensile tests. The solution to the inverse problem identifies the range of the nonlinearity parameters for a given tensile strength and enables to categorize the contribution of the quadratic and cubic nonlinearities in mechanical response for different materials.","PeriodicalId":189764,"journal":{"name":"2021 48th Annual Review of Progress in Quantitative Nondestructive Evaluation","volume":"8 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132561049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Modelling Anisotropy Influence on Guided Wave Scattering at Composite Delaminations","authors":"F. Hervin, P. Fromme","doi":"10.1115/qnde2021-74591","DOIUrl":"https://doi.org/10.1115/qnde2021-74591","url":null,"abstract":"\u0000 Carbon fibre reinforced composite laminates are widely used in aerospace structures but are prone to barely visible impact damage (BVID). Depending on impact severity, delaminations can form below the surface of the laminate, reducing the load bearing capacity. Efficient structural health monitoring (SHM) of composite panels can be achieved using guided waves propagating along the structure. Propagation and scattering of the A0 Lamb wave mode in a quasi-isotropic composite laminate was modelled using full three-dimensional (3D) Finite Element (FE) simulations. Individual ply layers were modelled using homogeneous unidirectional composite material properties to accurately capture the anisotropy effects. FE predictions for scattering and energy trapping at delaminations were compared to experimental measurements.\u0000 Noncontact, full-wavefield guided wave measurements were obtained using a laser vibrometer. Good agreement was found between experiments and FE predictions. The effect of delamination shape and depth was investigated through a numerical parameter study. The angular dependency of the amplitude of the scattered wave was calculated. The influence of ply layer anisotropy on wave propagation in an undamaged laminate was investigated numerically. The sensitivity of guided waves for the detection of delaminations due to barely visible impact damage (BVID) in composite panels has been verified.","PeriodicalId":189764,"journal":{"name":"2021 48th Annual Review of Progress in Quantitative Nondestructive Evaluation","volume":"4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125383861","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Coda Waves for Health Monitoring of Composites Under Low-Velocity Impact","authors":"Subal Sharma, V. Dayal","doi":"10.1115/qnde2021-75297","DOIUrl":"https://doi.org/10.1115/qnde2021-75297","url":null,"abstract":"\u0000 Coda waves have been shown to be sensitive to lab-controlled defects such as very small holes in fibrous composite material. In the real world, damages are subtler and more irregular. The main objective of this work is to investigate coda wave capability to detect low-velocity impact damages. The emphasis is to detect the presence of barely visible impact damages using ultrasonic waves. Detection of incipient damage state is important as it will grow over the life of the structure. Differential features, previously used in similar work, have been utilized to detect realistic impact damages on carbon fiber composites. Quasi-isotropic composite laminates were subjected to low-velocity impact energy ranging from 2J to 4.5J. Two differential features reported could be used detect the presence of damage. It is also observed that ply orientation can be a deterministic factor for indicating damages. The size and shape of the impact damage has been characterized using ultrasonic C-scans. Results indicate that coda waves can be used for the detection of damage due to low-velocity impact.","PeriodicalId":189764,"journal":{"name":"2021 48th Annual Review of Progress in Quantitative Nondestructive Evaluation","volume":"2015 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121529913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Estimating Guided Wave Velocity Variation With Neural Networks","authors":"Ori Leibovici, Kang Yang, J. Harley","doi":"10.1115/qnde2021-75080","DOIUrl":"https://doi.org/10.1115/qnde2021-75080","url":null,"abstract":"\u0000 While guided wave structural health monitoring (SHM) is widely researched for ensuring safety, estimating performance deterioration, and detecting damage in structures, it experiences setbacks in accuracy due to varying environmental, sensor, and material factors. To combat these challenges, environmentally variable guided wave data is often stretched with temperature compensation methods, such as the scale transform and optimal signal stretch, to match a baseline signal and enable accurate damage detection. Yet, these methods fail for large environmental changes. This paper addresses this challenge by demonstrating a machine learning method to predict stretch factors. This is accomplished with feed-forward neural networks that approximate the complex velocity change function. We demonstrate that our machine learning approach outperforms the prior art on simulated Lamb wave data and is robust with extreme velocity variations. While our machine learning models do not conduct temperature compensation, their accurate stretch factor predictions serve as a proof of concept that a better model is plausible.","PeriodicalId":189764,"journal":{"name":"2021 48th Annual Review of Progress in Quantitative Nondestructive Evaluation","volume":"76 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123045321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}