用磁巴克豪森噪声和显微组织表征评价HY-80钢回火脆化

M. Roberts, Charles D'Ambra, Jason Schibler, M. Manuel, T. Krause, Aroba Saleem
{"title":"用磁巴克豪森噪声和显微组织表征评价HY-80钢回火脆化","authors":"M. Roberts, Charles D'Ambra, Jason Schibler, M. Manuel, T. Krause, Aroba Saleem","doi":"10.1115/qnde2021-75000","DOIUrl":null,"url":null,"abstract":"\n HY80 steel is a low-carbon steel known for embodying high strength and toughness properties. This steel is used in submarine applications. Temper embrittlement, which is the reduction of fracture toughness, occurs in steels when subject to aging and drastic temperature fluctuations. These changes occur in submarines over time while in underwater environments. During temper embrittlement, impurity atoms and carbides migrate to grain boundaries, which make the steel more susceptible to fracture. A non-destructive testing (NDT) method is desirable to assess the temper embrittlement damage in HY80. Magnetic Barkhausen Noise (MBN) is of interest as being a potential NDT method for analyzing HY80. Focusing on microstructural characterization and its effect on MBN could have implications for establishing an MBN based method to detect varied stages of temper embrittlement in HY80 steel. In this research, samples of HY80 were prepared and heat treated for 16–336 hours to mimic various degrees of temper embrittlement. Microstructural changes with heat treatment were characterized and connected to the MBN produced at each holding time. Methods consisted of performing scanning electron microscopy (SEM) and using an MBN measurement system. It was observed that as holding time increases, grain size increases and carbide density within the grains decreases. These carbides, which act as pinning sites, make it more difficult for domain walls to move, consequently affecting MBN energy.","PeriodicalId":189764,"journal":{"name":"2021 48th Annual Review of Progress in Quantitative Nondestructive Evaluation","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluating Temper Embrittlement in HY-80 Steel Using Magnetic Barkhausen Noise and Microstructural Characterization\",\"authors\":\"M. Roberts, Charles D'Ambra, Jason Schibler, M. Manuel, T. Krause, Aroba Saleem\",\"doi\":\"10.1115/qnde2021-75000\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n HY80 steel is a low-carbon steel known for embodying high strength and toughness properties. This steel is used in submarine applications. Temper embrittlement, which is the reduction of fracture toughness, occurs in steels when subject to aging and drastic temperature fluctuations. These changes occur in submarines over time while in underwater environments. During temper embrittlement, impurity atoms and carbides migrate to grain boundaries, which make the steel more susceptible to fracture. A non-destructive testing (NDT) method is desirable to assess the temper embrittlement damage in HY80. Magnetic Barkhausen Noise (MBN) is of interest as being a potential NDT method for analyzing HY80. Focusing on microstructural characterization and its effect on MBN could have implications for establishing an MBN based method to detect varied stages of temper embrittlement in HY80 steel. In this research, samples of HY80 were prepared and heat treated for 16–336 hours to mimic various degrees of temper embrittlement. Microstructural changes with heat treatment were characterized and connected to the MBN produced at each holding time. Methods consisted of performing scanning electron microscopy (SEM) and using an MBN measurement system. It was observed that as holding time increases, grain size increases and carbide density within the grains decreases. These carbides, which act as pinning sites, make it more difficult for domain walls to move, consequently affecting MBN energy.\",\"PeriodicalId\":189764,\"journal\":{\"name\":\"2021 48th Annual Review of Progress in Quantitative Nondestructive Evaluation\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 48th Annual Review of Progress in Quantitative Nondestructive Evaluation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/qnde2021-75000\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 48th Annual Review of Progress in Quantitative Nondestructive Evaluation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/qnde2021-75000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

HY80钢是一种低碳钢,以其高强度和韧性而闻名。这种钢材用于潜艇。回火脆化是指钢在经受时效和剧烈温度波动时断裂韧性的降低。这些变化发生在潜艇的水下环境中。在回火脆化过程中,杂质原子和碳化物向晶界迁移,使钢更容易断裂。需要一种无损检测(NDT)方法来评估HY80回火脆化损伤。磁巴克豪森噪声(MBN)作为一种有潜力的无损检测方法被人们所关注。关注微观组织表征及其对MBN的影响可能有助于建立基于MBN的方法来检测HY80钢中不同阶段的回火脆化。在本研究中,制备了HY80样品,并对其进行了16-336小时的热处理,以模拟不同程度的回火脆化。研究了热处理过程中的显微组织变化,并将其与不同保温时间产生的MBN相联系。方法包括扫描电子显微镜(SEM)和MBN测量系统。结果表明,随着保温时间的延长,晶粒尺寸增大,晶粒内碳化物密度减小。这些碳化物作为固定位点,使畴壁更难移动,从而影响MBN能量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluating Temper Embrittlement in HY-80 Steel Using Magnetic Barkhausen Noise and Microstructural Characterization
HY80 steel is a low-carbon steel known for embodying high strength and toughness properties. This steel is used in submarine applications. Temper embrittlement, which is the reduction of fracture toughness, occurs in steels when subject to aging and drastic temperature fluctuations. These changes occur in submarines over time while in underwater environments. During temper embrittlement, impurity atoms and carbides migrate to grain boundaries, which make the steel more susceptible to fracture. A non-destructive testing (NDT) method is desirable to assess the temper embrittlement damage in HY80. Magnetic Barkhausen Noise (MBN) is of interest as being a potential NDT method for analyzing HY80. Focusing on microstructural characterization and its effect on MBN could have implications for establishing an MBN based method to detect varied stages of temper embrittlement in HY80 steel. In this research, samples of HY80 were prepared and heat treated for 16–336 hours to mimic various degrees of temper embrittlement. Microstructural changes with heat treatment were characterized and connected to the MBN produced at each holding time. Methods consisted of performing scanning electron microscopy (SEM) and using an MBN measurement system. It was observed that as holding time increases, grain size increases and carbide density within the grains decreases. These carbides, which act as pinning sites, make it more difficult for domain walls to move, consequently affecting MBN energy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信