{"title":"How do mountains grow?","authors":"Sean D. Willett","doi":"10.1038/s43017-024-00630-1","DOIUrl":"10.1038/s43017-024-00630-1","url":null,"abstract":"Mac (6, UK) asks Prof. Sean Willett how mountains grow.","PeriodicalId":18921,"journal":{"name":"Nature Reviews Earth & Environment","volume":"6 1","pages":"6-6"},"PeriodicalIF":0.0,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43017-024-00630-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142976656","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Victoria Flexer, Cornelis van Leeuwen, Kirsi Niinimäki, Shilong Piao, Erica R. Siirila-Woodburn, Lan Wang-Erlandsson
{"title":"Reflecting on impactful articles at Nature Reviews Earth & Environment","authors":"Victoria Flexer, Cornelis van Leeuwen, Kirsi Niinimäki, Shilong Piao, Erica R. Siirila-Woodburn, Lan Wang-Erlandsson","doi":"10.1038/s43017-024-00623-0","DOIUrl":"10.1038/s43017-024-00623-0","url":null,"abstract":"In celebration of the fifth year anniversary of Nature Reviews Earth & Environment, we ask authors of some of our most impactful articles (with respect to news stories, social media engagement, Altmetric scores, citations, policy mentions and article accesses) to reflect on the successes of their Reviews.","PeriodicalId":18921,"journal":{"name":"Nature Reviews Earth & Environment","volume":"6 1","pages":"12-16"},"PeriodicalIF":0.0,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142976695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Why do tides vary regionally?","authors":"Sunke Trace-Kleeberg","doi":"10.1038/s43017-024-00629-8","DOIUrl":"10.1038/s43017-024-00629-8","url":null,"abstract":"Ashton (7, UK) asks Sunke Trace-Kleeberg why tides can vary so much from one location to another.","PeriodicalId":18921,"journal":{"name":"Nature Reviews Earth & Environment","volume":"6 1","pages":"7-7"},"PeriodicalIF":0.0,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43017-024-00629-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142976700","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Introducing ‘Ask an Expert’","authors":"","doi":"10.1038/s43017-024-00641-y","DOIUrl":"10.1038/s43017-024-00641-y","url":null,"abstract":"Nature Reviews Earth & Environment is pleased to launch a new article type — Ask an Expert — that offers the public an opportunity to have their burning questions about Earth science answered.","PeriodicalId":18921,"journal":{"name":"Nature Reviews Earth & Environment","volume":"6 1","pages":"1-1"},"PeriodicalIF":0.0,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43017-024-00641-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142976693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"How often do supereruptions occur?","authors":"Katy J. Chamberlain","doi":"10.1038/s43017-024-00632-z","DOIUrl":"10.1038/s43017-024-00632-z","url":null,"abstract":"Andrzej (41, Poland) asks Dr Katy Chamberlain about the frequency of the largest volcanic eruptions on Earth.","PeriodicalId":18921,"journal":{"name":"Nature Reviews Earth & Environment","volume":"6 1","pages":"8-8"},"PeriodicalIF":0.0,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43017-024-00632-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142976690","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Daniel L. Swain, Andreas F. Prein, John T. Abatzoglou, Christine M. Albano, Manuela Brunner, Noah S. Diffenbaugh, Deepti Singh, Christopher B. Skinner, Danielle Touma
{"title":"Hydroclimate volatility on a warming Earth","authors":"Daniel L. Swain, Andreas F. Prein, John T. Abatzoglou, Christine M. Albano, Manuela Brunner, Noah S. Diffenbaugh, Deepti Singh, Christopher B. Skinner, Danielle Touma","doi":"10.1038/s43017-024-00624-z","DOIUrl":"10.1038/s43017-024-00624-z","url":null,"abstract":"Hydroclimate volatility refers to sudden, large and/or frequent transitions between very dry and very wet conditions. In this Review, we examine how hydroclimate volatility is anticipated to evolve with anthropogenic warming. Using a metric of ‘hydroclimate whiplash’ based on the Standardized Precipitation Evapotranspiration Index, global-averaged subseasonal (3-month) and interannual (12-month) whiplash have increased by 31–66% and 8–31%, respectively, since the mid-twentieth century. Further increases are anticipated with ongoing warming, including subseasonal increases of 113% and interannual increases of 52% over land areas with 3 °C of warming; these changes are largest at high latitudes and from northern Africa eastward into South Asia. Extensive evidence links these increases primarily to thermodynamics, namely the rising water-vapour-holding capacity and potential evaporative demand of the atmosphere. Increases in hydroclimate volatility will amplify hazards associated with rapid swings between wet and dry states (including flash floods, wildfires, landslides and disease outbreaks), and could accelerate a water management shift towards co-management of drought and flood risks. A clearer understanding of plausible future trajectories of hydroclimate volatility requires expanded focus on the response of atmospheric circulation to regional and global forcings, as well as land–ocean–atmosphere feedbacks, using large ensemble climate model simulations, storm-resolving high-resolution models and emerging machine learning methods. Rapid transitions between extreme wet and extreme dry conditions — ‘hydroclimate whiplash’ — have marked environmental and societal impacts. This Review outlines observed and projected changes in hydroclimate whiplash, suggesting that subseasonal and interannual volatility will increase markedly with ongoing warming.","PeriodicalId":18921,"journal":{"name":"Nature Reviews Earth & Environment","volume":"6 1","pages":"35-50"},"PeriodicalIF":0.0,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43017-024-00624-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142976681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A landscape-scale view of soil organic matter dynamics","authors":"Sebastian Doetterl, Asmeret Asefaw Berhe, Katherine Heckman, Corey Lawrence, Jörg Schnecker, Rodrigo Vargas, Cordula Vogel, Rota Wagai","doi":"10.1038/s43017-024-00621-2","DOIUrl":"10.1038/s43017-024-00621-2","url":null,"abstract":"Soil carbon is an important component of the terrestrial carbon cycle and could be augmented through improved soil management to mitigate climate change. However, data gaps for numerous regions and a lack of understanding of the heterogeneity of biogeochemical processes across diverse soil landscapes hinder the development of large-scale representations of soil organic matter (SOM) dynamics. In this Perspective, we outline how understanding soil formation processes and complexity at the landscape scale can inform predictions of soil organic matter (SOM) cycling and soil carbon sequestration. Long-term alterations of the soil matrix caused by weathering and soil redistribution vary across climate zones and ecosystems, but particularly with the structure of landscapes at the regional scale. Thus, oversimplified generalizations that assume that the drivers of SOM dynamics can be scaled directly from local to global regimes and vice versa leads to large uncertainties in global projections of soil C stocks. Data-driven models with enhanced coverage of underrepresented regions, particularly where soils are physicochemically distinct and environmental change is most rapid, are key to understanding C turnover and stabilization at landscape scales to better predict global soil carbon dynamics. Soil carbon cycling is closely linked with landscape complexities in soil properties, climate and land use. This Perspective outlines how soil formation theory could provide insight on landscape-scale soil–carbon interactions as well as carbon sequestration and improve predictions of future soil organic matter dynamics.","PeriodicalId":18921,"journal":{"name":"Nature Reviews Earth & Environment","volume":"6 1","pages":"67-81"},"PeriodicalIF":0.0,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142976676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jennifer Jenkins, Beth A. Johnson, Kendall Valentine, Kendra J. Lynn
{"title":"Considerations and perspectives on pregnancy and fieldwork","authors":"Jennifer Jenkins, Beth A. Johnson, Kendall Valentine, Kendra J. Lynn","doi":"10.1038/s43017-024-00631-0","DOIUrl":"10.1038/s43017-024-00631-0","url":null,"abstract":"Fieldwork is integral to geoscience but can come with risks that increase for fieldworkers who are pregnant. Consultation with medical staff and completion of risk assessments are essential steps, but pregnant individuals also benefit from supportive colleagues, reasonable accommodations, and the freedom to adapt plans as pregnancy progresses.","PeriodicalId":18921,"journal":{"name":"Nature Reviews Earth & Environment","volume":"6 1","pages":"2-3"},"PeriodicalIF":0.0,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142976675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Using drones to investigate rock glacier kinematics","authors":"Melanie Stammler","doi":"10.1038/s43017-024-00628-9","DOIUrl":"10.1038/s43017-024-00628-9","url":null,"abstract":"Melanie Stammler explains how drones help reveal changes in rock glacier kinematics and elucidate the state of mountain permafrost.","PeriodicalId":18921,"journal":{"name":"Nature Reviews Earth & Environment","volume":"6 1","pages":"11-11"},"PeriodicalIF":0.0,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142976683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Using a vacuum to collect glacial meltwater from ice","authors":"Madeleine Lewis","doi":"10.1038/s43017-024-00625-y","DOIUrl":"10.1038/s43017-024-00625-y","url":null,"abstract":"Madeleine Lewis explains how a needle and peristaltic pump system can be used to isolate supraglacial meltwater.","PeriodicalId":18921,"journal":{"name":"Nature Reviews Earth & Environment","volume":"6 1","pages":"9-9"},"PeriodicalIF":0.0,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142976680","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}