Nature Reviews Earth & Environment最新文献

筛选
英文 中文
Arctic Ocean bathymetry and its connections to tectonics, oceanography and climate
Nature Reviews Earth & Environment Pub Date : 2025-03-06 DOI: 10.1038/s43017-025-00647-0
Carmen Gaina, Martin Jakobsson, Eivind O. Straume, Mary-Louise Timmermans, Kai Boggild, Stefan Bünz, Vera Schlindwein, Arne Døssing
{"title":"Arctic Ocean bathymetry and its connections to tectonics, oceanography and climate","authors":"Carmen Gaina, Martin Jakobsson, Eivind O. Straume, Mary-Louise Timmermans, Kai Boggild, Stefan Bünz, Vera Schlindwein, Arne Døssing","doi":"10.1038/s43017-025-00647-0","DOIUrl":"10.1038/s43017-025-00647-0","url":null,"abstract":"For at least the past 50 million years, the Arctic region has had a major role in regulating global climate regimes and their variations through time. In this Review, we discuss the role of the Arctic oceanic basin and its complex bathymetry in controlling ocean circulation and marine cryosphere development. The spatial distribution and depth of various seafloor features, such as ocean gateways, submarine plateaus and continental shelves, influence the pathways of ocean currents, both today and in the past. The Arctic Ocean was an enclosed basin until the Early Eocene (56–48 million years ago), when the Eurasian Basin started to form and a shallow sea connected the Arctic to the Tethys Ocean. The connections with the North Atlantic and the global ocean through shallow and deep gateways prompted the transition from a global greenhouse to icehouse climate. However, the Arctic Ocean remains underexplored, as less than one-quarter of its seafloor is mapped in detail. Future integrated geoscience research, modern bathymetric mapping technology and active international programmes are needed to close these data gaps. Changes in seafloor topography, resulting from tectonic, magmatic and sedimentary processes, influence Arctic and global climate via a multitude of impacts on ocean pathways and energetics. This Review explores the past and present links between Arctic bathymetry, tectonics, oceans and climate.","PeriodicalId":18921,"journal":{"name":"Nature Reviews Earth & Environment","volume":"6 3","pages":"211-227"},"PeriodicalIF":0.0,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143602869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
What are the impacts of fracking operations on local water quality?
Nature Reviews Earth & Environment Pub Date : 2025-03-03 DOI: 10.1038/s43017-025-00651-4
Jennifer S. Harkness
{"title":"What are the impacts of fracking operations on local water quality?","authors":"Jennifer S. Harkness","doi":"10.1038/s43017-025-00651-4","DOIUrl":"10.1038/s43017-025-00651-4","url":null,"abstract":"Margaret (95, UK) asks Dr Jennifer Harkness how pollution from fracking can impact local water quality.","PeriodicalId":18921,"journal":{"name":"Nature Reviews Earth & Environment","volume":"6 3","pages":"159-160"},"PeriodicalIF":0.0,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143602893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biogeochemical consequences of marine fisheries and aquaculture
Nature Reviews Earth & Environment Pub Date : 2025-02-18 DOI: 10.1038/s43017-024-00633-y
Nicholas E. Ray, Stefano Bonaglia, Emma L. Cavan, Fernanda G. Sampaio, Jessica A. Gephart, Jenny R. Hillman, Sara Hornborg, Sarah Paradis, Colleen M. Petrik, Justin Tiano, Junji Yuan
{"title":"Biogeochemical consequences of marine fisheries and aquaculture","authors":"Nicholas E. Ray, Stefano Bonaglia, Emma L. Cavan, Fernanda G. Sampaio, Jessica A. Gephart, Jenny R. Hillman, Sara Hornborg, Sarah Paradis, Colleen M. Petrik, Justin Tiano, Junji Yuan","doi":"10.1038/s43017-024-00633-y","DOIUrl":"10.1038/s43017-024-00633-y","url":null,"abstract":"Marine fisheries and aquaculture are important contributors to global food security but disturb biogeochemical cycles from local to global scales. In this Review, we summarize how marine fisheries and aquaculture affect biogeochemical cycling of carbon, nitrogen and phosphorus, and discuss differences in the spatial scale, duration and magnitude of their biogeochemical consequences. Globally, marine capture fisheries and aquaculture remove approximately 21.0 Tg C year–1, 4.6 Tg N year–1 and 0.97 Tg P year–1 from the ocean, dominated by fish and shellfish removal. Point-of-harvest activities in marine capture fisheries result in biomass extraction, fishing gear impacts on the sea bed, fuel use and emissions, lost fishing gear and altered trophic structure. Aquaculture involves the addition and subsequent extraction of biomass, and habitat alteration during the introduction of farm structures. These disturbances affect the biogeochemistry of the water column and sediment, influencing the cycling and fate of nutrients over days to centuries and from local to global scales. For example, animals raised in aquaculture excrete 6.5 Tg N year–1 and 1.2 Tg P year–1, contributing to global-scale effects. Better incorporating these biogeochemical effects into environmental footprint assessments of products can guide more sustainable decision-making in the sector. Marine fisheries and aquaculture support global food security. This Review considers how fishery and aquaculture activities influence marine nutrient dynamics and trophic structure, with implications for biogeochemical cycles from local to global scales.","PeriodicalId":18921,"journal":{"name":"Nature Reviews Earth & Environment","volume":"6 3","pages":"163-177"},"PeriodicalIF":0.0,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143602870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Using spectrophotometry to measure nutrient concentrations in the field
Nature Reviews Earth & Environment Pub Date : 2025-02-17 DOI: 10.1038/s43017-025-00648-z
Chequita N. Brooks
{"title":"Using spectrophotometry to measure nutrient concentrations in the field","authors":"Chequita N. Brooks","doi":"10.1038/s43017-025-00648-z","DOIUrl":"10.1038/s43017-025-00648-z","url":null,"abstract":"Chequita Brooks explains how spectrophotometry can be used to measure concentrations of important molecules in the environment.","PeriodicalId":18921,"journal":{"name":"Nature Reviews Earth & Environment","volume":"6 3","pages":"161-161"},"PeriodicalIF":0.0,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143602871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Capturing glacier calving with time-lapse camera arrays
Nature Reviews Earth & Environment Pub Date : 2025-02-17 DOI: 10.1038/s43017-025-00649-y
Connie Harpur
{"title":"Capturing glacier calving with time-lapse camera arrays","authors":"Connie Harpur","doi":"10.1038/s43017-025-00649-y","DOIUrl":"10.1038/s43017-025-00649-y","url":null,"abstract":"Connie Harpur explains how time-lapse camera arrays can be used to capture glacier calving activity.","PeriodicalId":18921,"journal":{"name":"Nature Reviews Earth & Environment","volume":"6 3","pages":"162-162"},"PeriodicalIF":0.0,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143602894","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The formation and evolution of the Earth’s inner core
Nature Reviews Earth & Environment Pub Date : 2025-02-12 DOI: 10.1038/s43017-024-00639-6
Alfred J. Wilson, Christopher J. Davies, Andrew M. Walker, Monica Pozzo, Dario Alfè, Arwen Deuss
{"title":"The formation and evolution of the Earth’s inner core","authors":"Alfred J. Wilson, Christopher J. Davies, Andrew M. Walker, Monica Pozzo, Dario Alfè, Arwen Deuss","doi":"10.1038/s43017-024-00639-6","DOIUrl":"10.1038/s43017-024-00639-6","url":null,"abstract":"The growth of the solid inner core from the liquid outer core provides crucial power for generating the geomagnetic field. However, the traditional view of inner core growth does not include the physical requirement that liquids must be supercooled below the melting point before freezing can begin. In this Review, we explore the impact of supercooling the Earth’s core on inner core formation, growth and dynamics, and the interpretation of seismic and palaeomagnetic observations. Mineral physics calculations suggest that at least 450 K of supercooling is needed to spontaneously nucleate the inner core. However, when satisfying inferences from geophysical constraints, the maximum available supercooling is estimated at 420 K and more probably <100 K. Supercooling the Earth’s core requires that the inner core had at least two growth regimes. The first regime is a rapid phase that freezes supercooled liquids at rates comparable to outer core dynamics (cm yr−1), followed by the second regime that is a traditional in-equilibrium growth phase proportional to the cooling rate of the core (mm yr−1). Future research should seek evidence for rapid growth in the palaeomagnetic and seismic records and the mechanisms that produce deformation texture, particularly those owing to heterogeneous inner core growth, inner core convection, and coupling between freezing and the magnetic field. Nucleation and growth of Earth’s solid inner core has a crucial role powering the geomagnetic field. This Review explores the timing and mechanisms of inner core growth consistent with physical constraints and first-order observations of the thermal evolution of Earth.","PeriodicalId":18921,"journal":{"name":"Nature Reviews Earth & Environment","volume":"6 2","pages":"140-154"},"PeriodicalIF":0.0,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143389471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Atmospheric rivers in Antarctica
Nature Reviews Earth & Environment Pub Date : 2025-02-11 DOI: 10.1038/s43017-024-00638-7
Jonathan D. Wille, Vincent Favier, Irina V. Gorodetskaya, Cécile Agosta, Rebecca Baiman, J. E. Barrett, Léonard Barthelemy, Burcu Boza, Deniz Bozkurt, Mathieu Casado, Anastasiia Chyhareva, Kyle R. Clem, Francis Codron, Rajashree Tri Datta, Claudio Durán-Alarcón, Diana Francis, Andrew O. Hoffman, Marlen Kolbe, Svitlana Krakovska, Gabrielle Linscott, Michelle L. Maclennan, Kyle S. Mattingly, Ye Mu, Benjamin Pohl, Christophe Leroy-Dos Santos, Christine A. Shields, Emir Toker, Andrew C. Winters, Ziqi Yin, Xun Zou, Chen Zhang, Zhenhai Zhang
{"title":"Atmospheric rivers in Antarctica","authors":"Jonathan D. Wille, Vincent Favier, Irina V. Gorodetskaya, Cécile Agosta, Rebecca Baiman, J. E. Barrett, Léonard Barthelemy, Burcu Boza, Deniz Bozkurt, Mathieu Casado, Anastasiia Chyhareva, Kyle R. Clem, Francis Codron, Rajashree Tri Datta, Claudio Durán-Alarcón, Diana Francis, Andrew O. Hoffman, Marlen Kolbe, Svitlana Krakovska, Gabrielle Linscott, Michelle L. Maclennan, Kyle S. Mattingly, Ye Mu, Benjamin Pohl, Christophe Leroy-Dos Santos, Christine A. Shields, Emir Toker, Andrew C. Winters, Ziqi Yin, Xun Zou, Chen Zhang, Zhenhai Zhang","doi":"10.1038/s43017-024-00638-7","DOIUrl":"10.1038/s43017-024-00638-7","url":null,"abstract":"Antarctic atmospheric rivers (ARs) are a form of extreme weather that transport heat and moisture from the Southern Hemisphere subtropics and/or mid-latitudes to the Antarctic continent. Present-day AR events generally have a positive influence on the Antarctic ice-sheet mass balance by producing heavy snowfall, yet they also cause melt of sea ice and coastal ice sheet areas, as well as ice shelf destabilization. In this Review, we explore the atmospheric dynamics and impacts of Antarctic ARs over their life cycle to better understand their net contributions to ice-sheet mass balance. ARs occur in high-amplitude pressure couplets, and those strong enough to reach the Antarctic are often formed within Rossby waves initiated by tropical convection. Antarctic ARs are rare events (~3 days per year per location) but have been responsible for 50–70% of extreme snowfall events in East Antarctica since the 1980s. However, they can also trigger extensive surface melting events, such as the final ice shelf collapse of Larsen A in 1995 and Larsen B in 2002. Climate change will likely cause stronger ARs as anthropogenic warming increases atmospheric water vapour. Future research must determine how these climate change impacts will alter the relationship among Antarctic ARs, net ice-sheet mass balance and future sea-level rise. Atmospheric rivers provide the majority of water vapour transport to the high latitudes. This Review summarizes Antarctic atmospheric river dynamics and climatology and discusses their impacts on the mass balance of the Antarctic ice sheet.","PeriodicalId":18921,"journal":{"name":"Nature Reviews Earth & Environment","volume":"6 3","pages":"178-192"},"PeriodicalIF":0.0,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143602892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The land–ocean Arctic carbon cycle
Nature Reviews Earth & Environment Pub Date : 2025-02-06 DOI: 10.1038/s43017-024-00627-w
Jorien E. Vonk, Michael Fritz, Niek J. Speetjens, Marcel Babin, Annett Bartsch, Luana S. Basso, Lisa Bröder, Mathias Göckede, Örjan Gustafsson, Gustaf Hugelius, Anna M. Irrgang, Bennet Juhls, McKenzie A. Kuhn, Hugues Lantuit, Manfredi Manizza, Jannik Martens, Matt O’Regan, Anya Suslova, Suzanne E. Tank, Jens Terhaar, Scott Zolkos
{"title":"The land–ocean Arctic carbon cycle","authors":"Jorien E. Vonk, Michael Fritz, Niek J. Speetjens, Marcel Babin, Annett Bartsch, Luana S. Basso, Lisa Bröder, Mathias Göckede, Örjan Gustafsson, Gustaf Hugelius, Anna M. Irrgang, Bennet Juhls, McKenzie A. Kuhn, Hugues Lantuit, Manfredi Manizza, Jannik Martens, Matt O’Regan, Anya Suslova, Suzanne E. Tank, Jens Terhaar, Scott Zolkos","doi":"10.1038/s43017-024-00627-w","DOIUrl":"10.1038/s43017-024-00627-w","url":null,"abstract":"Anthropogenic climate warming is amplified in the Arctic, impacting the Arctic carbon cycle and its role in regulating climate and global biogeochemical cycles. In this Review, we provide a quantitative and comprehensive overview of the present-day Arctic carbon cycle across the land–ocean continuum. Terrestrial soil stocks total 877 ± 16 Pg C, with upper marine sediments containing 82 ± 35 Pg C. Overall, the integrated Arctic system is a carbon sink, driven by oceanic uptake of CO2 (127 ± 36 Tg C year−1) and organic carbon burial in shelf sea sediments (112 ± 41 Tg C year–1). Terrestrial systems, including inland waters and disturbance, are a net source of CH4 (38 (21, 53) Tg C year–1) and CO2 (12 (–606, 661) Tg C year–1). The Arctic carbon sink will likely weaken under continued warming, owing to factors such as increased coastal erosion, outgassing of riverine organic carbon and enhanced nearshore carbon turnover lowering shelf sediment burial. Arctic greening and increases in terrestrial carbon sinks will be substantially offset by increases in soil respiration, disturbance from extreme events and enhanced emissions from inland waters. Future research should prioritize enhanced coverage of small catchments and nearshore regions, and inclusion of non-linear responses in biogeochemical models. Anthropogenic warming is perturbing the Arctic carbon cycle. This Review provides an overview of contemporary carbon stocks and fluxes across terrestrial, aquatic and oceanic components of the integrated Arctic system.","PeriodicalId":18921,"journal":{"name":"Nature Reviews Earth & Environment","volume":"6 2","pages":"86-105"},"PeriodicalIF":0.0,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43017-024-00627-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143389480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mortality impacts of the most extreme heat events
Nature Reviews Earth & Environment Pub Date : 2025-02-04 DOI: 10.1038/s43017-024-00635-w
Tom Matthews, Colin Raymond, Josh Foster, Jane W. Baldwin, Catherine Ivanovich, Qinqin Kong, Patrick Kinney, Radley M. Horton
{"title":"Mortality impacts of the most extreme heat events","authors":"Tom Matthews, Colin Raymond, Josh Foster, Jane W. Baldwin, Catherine Ivanovich, Qinqin Kong, Patrick Kinney, Radley M. Horton","doi":"10.1038/s43017-024-00635-w","DOIUrl":"10.1038/s43017-024-00635-w","url":null,"abstract":"Extreme heat threatens human life, evidenced by >260,000 heat-related fatalities collectively in the deadliest events since 2000. In this Review, we link physical climate science with heat mortality risk, including crossings of uncompensable thresholds (beyond which human core body temperature rises uncontrollably) and unsurvivable thresholds (lethal core temperature increase within 6 h). Uncompensable thresholds (wet-bulb temperatures ~19–32 °C) depend strongly on age and the combination of air temperature and relative humidity. These thresholds have been breached rarely for younger adults (~2.2% of land area over 1994–2023) but more widely for older adults (~21%). Unsurvivable thresholds (wet-bulb temperatures ~20–34 °C) were only exceeded for older adults (~1.8% of land area). Anthropogenic warming will lead to more frequent threshold crossings, including tripling of the uncompensable land area for young adults if warming reaches 2 °C above preindustrial levels. Interdisciplinary work must improve the understanding of the deadly potential of unprecedented heat and how it can be reduced. Ensuring reliable access for all to cool refugia is an urgent priority as the atmosphere threatens to increasingly overwhelm human physiology under climate warming. Extreme heat is increasing in magnitude and frequency, threatening human health. This Review assesses mortality risk associated with extreme heat, revealing that human thermal tolerances (that is, uncompensable thresholds) were crossed for ~2% and 21% of global land area for young adults and older adults, respectively, from 1994 to 2023.","PeriodicalId":18921,"journal":{"name":"Nature Reviews Earth & Environment","volume":"6 3","pages":"193-210"},"PeriodicalIF":0.0,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143602875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Antarctic coastal polynyas in the global climate system
Nature Reviews Earth & Environment Pub Date : 2025-01-30 DOI: 10.1038/s43017-024-00634-x
Nicholas R. Golledge, Elizabeth D. Keller, Alexandra Gossart, Alena Malyarenko, Angela Bahamondes-Dominguez, Mario Krapp, Stefan Jendersie, Daniel P. Lowry, Alanna Alevropoulos-Borrill, Dirk Notz
{"title":"Antarctic coastal polynyas in the global climate system","authors":"Nicholas R. Golledge, Elizabeth D. Keller, Alexandra Gossart, Alena Malyarenko, Angela Bahamondes-Dominguez, Mario Krapp, Stefan Jendersie, Daniel P. Lowry, Alanna Alevropoulos-Borrill, Dirk Notz","doi":"10.1038/s43017-024-00634-x","DOIUrl":"10.1038/s43017-024-00634-x","url":null,"abstract":"Coastal polynyas describe regions of persistent open water within the sea-ice pack. In this Review, we outline the critical importance of Antarctic coastal polynyas in the Earth system (including for the atmosphere, sea-ice, ocean and biosphere) and outline their past, present and future changes. Strong offshore winds are the primary force opening coastal polynyas, varying on synoptic timescales to influence polynya existence and size. The exposed ocean surface ventilates heat to the atmosphere, allowing sea surface cooling and frazil ice formation. Frazil ice increases the salinity of surface waters, ultimately sinking as dense shelf water that drives the southern limb of the global ocean overturning circulation. Light and nutrient availability in coastal polynyas also encourages high primary productivity, making them critical aspects of the Antarctic marine food web. Coastal polynya strength and location varies through time, most notably at glacial–interglacial timescales owing to changes in continental shelf available for polynya formation. Predicting the future evolution of Antarctic coastal polynyas is challenged by inadequate model resolution and poorly constrained processes and behaviours, but there are indications that activity will decline with warming. A coordinated and expanded campaign of in situ measurements, as well as new satellite-based observations that use intelligent algorithms, would improve coupled atmosphere–sea-ice–ocean models and, thereby, enhance knowledge of Antarctic coastal polynyas. Antarctic coastal polynyas have a critical role in the Earth system, influencing the atmosphere, hydrosphere, cryosphere and biosphere. This Review outlines the importance of Antarctic coastal polynyas and documents their changes over time.","PeriodicalId":18921,"journal":{"name":"Nature Reviews Earth & Environment","volume":"6 2","pages":"126-139"},"PeriodicalIF":0.0,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143389475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信