Climate change impacts on roadways

Jo E. Sias, Eshan V. Dave, B. Shane Underwood, Benjamin F. Bowers, John T. Harvey, Theunis F. P. Henning, Susan L. Tighe, Jennifer M. Jacobs, Maria Pregnolato, Yaning Qiao, Ellen Mecray, Amir Golalipour, Alondra Chamorro, Philip Hendrick
{"title":"Climate change impacts on roadways","authors":"Jo E. Sias, Eshan V. Dave, B. Shane Underwood, Benjamin F. Bowers, John T. Harvey, Theunis F. P. Henning, Susan L. Tighe, Jennifer M. Jacobs, Maria Pregnolato, Yaning Qiao, Ellen Mecray, Amir Golalipour, Alondra Chamorro, Philip Hendrick","doi":"10.1038/s43017-025-00711-9","DOIUrl":null,"url":null,"abstract":"Roadways provide safe and efficient transport and are essential to the function of societies and economies. However, climate change increasingly pushes pavements beyond their engineering limits, leading to deterioration. In this Review, we explore the impacts of climate change on roadways and approaches to mitigate them. Roadways are vulnerable to changes in temperature, precipitation and sea level rise driven by climate change. High temperatures soften asphalt pavements, causing rutting, which is projected to increase by 2% per 1% increase in mean temperature. Increased moisture in the underlying soil caused by precipitation and sea level rise reduces the load-bearing capacity of roadways for months and in some cases halves their lifetime. Roadway closures due to extreme weather events or resulting reconstruction cause delays and detours; by 2100, high tide flooding in the USA is expected to cause delays of 3.4 billion vehicle-hours per year. Climate change is projected to increase national annual costs of pavement maintenance by over US$500 million on average by 2050, depending on the country. Adaptation strategies include adjusting the type of asphalt, reinforcing concrete with steel, stabilizing gravel roads and adding nature-based features. Rapid implementation of policies, guidance on evaluating adaptation alternatives and exploration of the combined impacts of multiple climate stressors are needed. Roadways are damaged by temperature extremes, increased precipitation and sea level rise. This Review discusses the mechanisms and impacts of climate stressors on roadways, the resulting operational and maintenance challenges, and strategies to increase resilience.","PeriodicalId":18921,"journal":{"name":"Nature Reviews Earth & Environment","volume":"6 9","pages":"555-573"},"PeriodicalIF":0.0000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Earth & Environment","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43017-025-00711-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Roadways provide safe and efficient transport and are essential to the function of societies and economies. However, climate change increasingly pushes pavements beyond their engineering limits, leading to deterioration. In this Review, we explore the impacts of climate change on roadways and approaches to mitigate them. Roadways are vulnerable to changes in temperature, precipitation and sea level rise driven by climate change. High temperatures soften asphalt pavements, causing rutting, which is projected to increase by 2% per 1% increase in mean temperature. Increased moisture in the underlying soil caused by precipitation and sea level rise reduces the load-bearing capacity of roadways for months and in some cases halves their lifetime. Roadway closures due to extreme weather events or resulting reconstruction cause delays and detours; by 2100, high tide flooding in the USA is expected to cause delays of 3.4 billion vehicle-hours per year. Climate change is projected to increase national annual costs of pavement maintenance by over US$500 million on average by 2050, depending on the country. Adaptation strategies include adjusting the type of asphalt, reinforcing concrete with steel, stabilizing gravel roads and adding nature-based features. Rapid implementation of policies, guidance on evaluating adaptation alternatives and exploration of the combined impacts of multiple climate stressors are needed. Roadways are damaged by temperature extremes, increased precipitation and sea level rise. This Review discusses the mechanisms and impacts of climate stressors on roadways, the resulting operational and maintenance challenges, and strategies to increase resilience.

Abstract Image

气候变化对道路的影响
道路提供安全和有效的运输,对社会和经济的运作至关重要。然而,气候变化日益推动路面超出其工程极限,导致路面恶化。在这篇综述中,我们探讨了气候变化对道路的影响以及缓解这些影响的方法。道路很容易受到气候变化导致的温度、降水和海平面上升的影响。高温软化沥青路面,造成车辙,预计平均温度每增加1%,车辙就会增加2%。由于降水和海平面上升,下层土壤中的水分增加,使道路的承载能力降低了几个月,在某些情况下,使其寿命减半。极端天气事件导致道路封闭或重建造成延误和绕行;到2100年,美国的涨潮洪水预计每年将造成34亿车小时的延误。预计到2050年,气候变化将使国家每年的路面维护费用平均增加5亿美元以上,具体情况视国家而定。适应策略包括调整沥青的类型,用钢筋加固混凝土,稳定砾石道路和增加基于自然的特征。需要快速实施政策,为评估适应备选方案提供指导,并探索多种气候压力源的综合影响。极端温度、降水增加和海平面上升会破坏道路。本综述讨论了气候压力源对道路的机制和影响,由此带来的运营和维护挑战,以及提高弹性的战略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信