Monatshefte für Mathematik最新文献

筛选
英文 中文
Lyapunov stability of the Basener–Ross system 巴斯纳-罗斯系统的李亚普诺夫稳定性
Monatshefte für Mathematik Pub Date : 2024-05-23 DOI: 10.1007/s00605-024-01990-y
Zaitao Liang, Fangfang Liao, Feng Wang
{"title":"Lyapunov stability of the Basener–Ross system","authors":"Zaitao Liang, Fangfang Liao, Feng Wang","doi":"10.1007/s00605-024-01990-y","DOIUrl":"https://doi.org/10.1007/s00605-024-01990-y","url":null,"abstract":"","PeriodicalId":18913,"journal":{"name":"Monatshefte für Mathematik","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141104536","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hyers-Ulam stability of mean value points 平均值点的海尔-乌兰稳定性
Monatshefte für Mathematik Pub Date : 2024-05-21 DOI: 10.1007/s00605-024-01987-7
Viorel Vîjîitu
{"title":"Hyers-Ulam stability of mean value points","authors":"Viorel Vîjîitu","doi":"10.1007/s00605-024-01987-7","DOIUrl":"https://doi.org/10.1007/s00605-024-01987-7","url":null,"abstract":"","PeriodicalId":18913,"journal":{"name":"Monatshefte für Mathematik","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141117463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the number of lattice points in thin sectors 关于薄扇形的晶格点数
Monatshefte für Mathematik Pub Date : 2024-05-19 DOI: 10.1007/s00605-024-01983-x
Ezra Waxman, Nadav Yesha
{"title":"On the number of lattice points in thin sectors","authors":"Ezra Waxman, Nadav Yesha","doi":"10.1007/s00605-024-01983-x","DOIUrl":"https://doi.org/10.1007/s00605-024-01983-x","url":null,"abstract":"<p>On the circle of radius <i>R</i> centred at the origin, consider a “thin” sector about the fixed line <span>(y = alpha x)</span> with edges given by the lines <span>(y = (alpha pm epsilon ) x)</span>, where <span>(epsilon = epsilon _R rightarrow 0)</span> as <span>( R rightarrow infty )</span>. We establish an asymptotic count for <span>(S_{alpha }(epsilon ,R))</span>, the number of integer lattice points lying in such a sector. Our results depend both on the decay rate of <span>(epsilon )</span> and on the rationality/irrationality type of <span>(alpha )</span>. In particular, we demonstrate that if <span>(alpha )</span> is Diophantine, then <span>(S_{alpha }(epsilon ,R))</span> is asymptotic to the area of the sector, so long as <span>(epsilon R^{t} rightarrow infty )</span> for some <span>( t&lt;2 )</span>.</p>","PeriodicalId":18913,"journal":{"name":"Monatshefte für Mathematik","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141150794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
k–Generalized Lucas numbers, perfect powers and the problem of Pillai k 广义卢卡斯数、完全幂和皮莱问题
Monatshefte für Mathematik Pub Date : 2024-05-16 DOI: 10.1007/s00605-024-01981-z
Bernadette Faye, Jonathan García, Carlos A. Gomez
{"title":"k–Generalized Lucas numbers, perfect powers and the problem of Pillai","authors":"Bernadette Faye, Jonathan García, Carlos A. Gomez","doi":"10.1007/s00605-024-01981-z","DOIUrl":"https://doi.org/10.1007/s00605-024-01981-z","url":null,"abstract":"","PeriodicalId":18913,"journal":{"name":"Monatshefte für Mathematik","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140971372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
H-Toeplitz operators on the function spaces 函数空间上的 H-Toeplitz 算子
Monatshefte für Mathematik Pub Date : 2024-05-15 DOI: 10.1007/s00605-024-01985-9
Sumin Kim, Eungil Ko, Ji Eun Lee, Jongrak Lee
{"title":"H-Toeplitz operators on the function spaces","authors":"Sumin Kim, Eungil Ko, Ji Eun Lee, Jongrak Lee","doi":"10.1007/s00605-024-01985-9","DOIUrl":"https://doi.org/10.1007/s00605-024-01985-9","url":null,"abstract":"","PeriodicalId":18913,"journal":{"name":"Monatshefte für Mathematik","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140971906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Radial symmetry of minimizers to the weighted p-Dirichlet energy 加权 p-Dirichlet 能量最小值的径向对称性
Monatshefte für Mathematik Pub Date : 2024-05-14 DOI: 10.1007/s00605-024-01986-8
David Kalaj
{"title":"Radial symmetry of minimizers to the weighted p-Dirichlet energy","authors":"David Kalaj","doi":"10.1007/s00605-024-01986-8","DOIUrl":"https://doi.org/10.1007/s00605-024-01986-8","url":null,"abstract":"","PeriodicalId":18913,"journal":{"name":"Monatshefte für Mathematik","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140981537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A characterization of Anosov rational forms in nilpotent Lie algebras associated to graphs 与图相关的零钾列代数中阿诺索夫有理形式的表征
Monatshefte für Mathematik Pub Date : 2024-05-06 DOI: 10.1007/s00605-024-01978-8
Jonas Deré, Thomas Witdouck
{"title":"A characterization of Anosov rational forms in nilpotent Lie algebras associated to graphs","authors":"Jonas Deré, Thomas Witdouck","doi":"10.1007/s00605-024-01978-8","DOIUrl":"https://doi.org/10.1007/s00605-024-01978-8","url":null,"abstract":"<p>Anosov diffeomorphisms are an important class of dynamical systems with many peculiar properties. Ever since they were introduced in the sixties, it has been an open question which manifolds can admit such diffeomorphisms, where tori of dimension greater than or equal to two are the typical examples. It is conjectured that the only manifolds supporting an Anosov diffeomorphism are finitely covered by a nilmanifold, a type of manifold closely related to rational nilpotent Lie algebras. In this paper, we study the existence of Anosov diffeomorphisms for a large class of these nilpotent Lie algebras, namely the ones that can be realized as a rational form in a Lie algebra associated to a graph. From a given simple undirected graph, one can construct a complex <i>c</i>-step nilpotent Lie algebra, which in general contains different non-isomorphic rational forms, as described by the authors in previous work. We determine precisely which forms correspond to a nilmanifold admitting an Anosov diffeomorphism, leading to the first class of complex nilpotent Lie algebras having several non-isomorphic rational forms and for which all the ones that are Anosov are described. In doing so, we put a new perspective on certain classifications in low dimensions and correct a false result in the literature.</p>","PeriodicalId":18913,"journal":{"name":"Monatshefte für Mathematik","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140889293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Soliton solutions for a class of critical Schrödinger equations with Stein–Weiss convolution parts in $$mathbb {R}^2$$ 在 $$mathbb {R}^2$ 中具有 Stein-Weiss 卷积部分的一类临界薛定谔方程的孤子解
Monatshefte für Mathematik Pub Date : 2024-05-03 DOI: 10.1007/s00605-024-01980-0
Claudianor Oliveira Alves, Liejun Shen
{"title":"Soliton solutions for a class of critical Schrödinger equations with Stein–Weiss convolution parts in $$mathbb {R}^2$$","authors":"Claudianor Oliveira Alves, Liejun Shen","doi":"10.1007/s00605-024-01980-0","DOIUrl":"https://doi.org/10.1007/s00605-024-01980-0","url":null,"abstract":"<p>We consider the following class of quasilinear Schrödinger equations introduced in plasma physics and nonlinear optics with Stein–Weiss convolution parts </p><span>$$begin{aligned} -Delta u+V(x) u+frac{kappa }{2} uDelta (u^2)=frac{1}{|x|^beta }Bigg (int _{mathbb {R}^2}frac{H(u)}{|x-y|^mu |y|^beta }dyBigg ) h(u),~xin mathbb {R}^2, end{aligned}$$</span><p>where <span>(kappa in mathbb {R}backslash {0})</span> is a parameter, <span>(beta &gt;0)</span>, <span>(0&lt;mu &lt;2)</span> with <span>(0&lt;2beta +mu &lt;2)</span> and <i>H</i> is the primitive of <i>h</i> that fulfills the critical exponential growth in the Trudinger–Moser sense. For <span>(kappa &lt;0)</span>: (i) via using a change of variable argument and the mountain-pass theorem, we investigate the existence of ground state solutions only assuming that <span>(Vin C^0(mathbb {R}^2,mathbb {R}^+))</span> and <span>(inf _{x in mathbb {R}^2}V(x)&gt;0)</span>, which complements and generalizes the problems proposed in our recent work in Alves and Shen (J Differ Equ 344:352–404, 2023); (ii) by developing a new type of Trudinger–Moser inequality, we establish a Pohoz̆aev type ground solution by the constraint minimization approach when <span>(Vequiv 1)</span>. Moreover, if <span>(kappa &gt;0)</span> is small, combining the mountain-pass theorem and Nash–Moser iteration procedure, we obtain the existence of nontrivial solutions, where the asymptotical behavior is also considered when <span>(kappa rightarrow 0^+)</span>. It seems that the results presented above are even new for the case <span>(kappa =0)</span>.</p>","PeriodicalId":18913,"journal":{"name":"Monatshefte für Mathematik","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140889172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Some properties of new general fractal measures 新的一般分形度量的一些特性
Monatshefte für Mathematik Pub Date : 2024-04-29 DOI: 10.1007/s00605-024-01979-7
Rim Achour, Bilel Selmi
{"title":"Some properties of new general fractal measures","authors":"Rim Achour, Bilel Selmi","doi":"10.1007/s00605-024-01979-7","DOIUrl":"https://doi.org/10.1007/s00605-024-01979-7","url":null,"abstract":"<p>In this research, we adopt a comprehensive approach to address the multifractal and fractal analysis problem. We introduce a novel definition for the general Hausdorff and packing measures by considering sums involving certain functions and variables. Specifically, we explore the sums of the form </p><span>$$begin{aligned} sum limits _i h^{-1}Big (q hbig (mu bigl (B(x_i,r_i)bigl )big )+tg(r_i)Big ), end{aligned}$$</span><p>where <span>(mu )</span> represents a Borel probability measure on <span>(mathbb R^d)</span>, and <i>q</i> and <i>t</i> are real numbers. The functions <i>h</i> and <i>g</i> are predetermined and play a significant role in our proposed intrinsic definition. Our observation reveals that estimating Hausdorff and packing pre-measures is significantly easier than estimating the exact Hausdorff and packing measures. Therefore, it is natural and essential to explore the relationships between the Hausdorff and packing pre-measures and their corresponding measures. This investigation constitutes the primary objective of this paper. Additionally, the secondary aim is to establish that, in the case of finite pre-measures, they possess a form of outer regularity in a metric space <i>X</i> that is not limited to a specific context or framework.</p>","PeriodicalId":18913,"journal":{"name":"Monatshefte für Mathematik","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140811843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pre-Schwarzian and Schwarzian norm estimates for subclasses of univalent functions 单值函数子类的前施瓦兹和施瓦兹规范估计值
Monatshefte für Mathematik Pub Date : 2024-04-20 DOI: 10.1007/s00605-024-01971-1
Xiaoyuan Wang, Huijie Li, Jinhua Fan
{"title":"Pre-Schwarzian and Schwarzian norm estimates for subclasses of univalent functions","authors":"Xiaoyuan Wang, Huijie Li, Jinhua Fan","doi":"10.1007/s00605-024-01971-1","DOIUrl":"https://doi.org/10.1007/s00605-024-01971-1","url":null,"abstract":"<p>In the present article, we are focused to study the sharp estimates of the pre-Schwarzian and Schwarzian norms for subclasses of univalent functions. We will generalize the results of Carrasco and Hernández (Anal Math Phys 13(2):22, 2023) to the case of Janowski convex mappings in terms of the value <span>(h^{prime prime }(0))</span>. We will also derive the sharp bound of pre-Schwarzian norm for a subclass of harmonic mappings whose fixed analytic part is a convex function of order <span>(alpha (0 le alpha &lt;1))</span>.</p>","PeriodicalId":18913,"journal":{"name":"Monatshefte für Mathematik","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140623732","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信