On the number of lattice points in thin sectors

Ezra Waxman, Nadav Yesha
{"title":"On the number of lattice points in thin sectors","authors":"Ezra Waxman, Nadav Yesha","doi":"10.1007/s00605-024-01983-x","DOIUrl":null,"url":null,"abstract":"<p>On the circle of radius <i>R</i> centred at the origin, consider a “thin” sector about the fixed line <span>\\(y = \\alpha x\\)</span> with edges given by the lines <span>\\(y = (\\alpha \\pm \\epsilon ) x\\)</span>, where <span>\\(\\epsilon = \\epsilon _R \\rightarrow 0\\)</span> as <span>\\( R \\rightarrow \\infty \\)</span>. We establish an asymptotic count for <span>\\(S_{\\alpha }(\\epsilon ,R)\\)</span>, the number of integer lattice points lying in such a sector. Our results depend both on the decay rate of <span>\\(\\epsilon \\)</span> and on the rationality/irrationality type of <span>\\(\\alpha \\)</span>. In particular, we demonstrate that if <span>\\(\\alpha \\)</span> is Diophantine, then <span>\\(S_{\\alpha }(\\epsilon ,R)\\)</span> is asymptotic to the area of the sector, so long as <span>\\(\\epsilon R^{t} \\rightarrow \\infty \\)</span> for some <span>\\( t&lt;2 \\)</span>.</p>","PeriodicalId":18913,"journal":{"name":"Monatshefte für Mathematik","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monatshefte für Mathematik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00605-024-01983-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

On the circle of radius R centred at the origin, consider a “thin” sector about the fixed line \(y = \alpha x\) with edges given by the lines \(y = (\alpha \pm \epsilon ) x\), where \(\epsilon = \epsilon _R \rightarrow 0\) as \( R \rightarrow \infty \). We establish an asymptotic count for \(S_{\alpha }(\epsilon ,R)\), the number of integer lattice points lying in such a sector. Our results depend both on the decay rate of \(\epsilon \) and on the rationality/irrationality type of \(\alpha \). In particular, we demonstrate that if \(\alpha \) is Diophantine, then \(S_{\alpha }(\epsilon ,R)\) is asymptotic to the area of the sector, so long as \(\epsilon R^{t} \rightarrow \infty \) for some \( t<2 \).

关于薄扇形的晶格点数
在以原点为圆心的半径为 R 的圆上,考虑一个关于固定直线 \(y = \alpha x\) 的 "薄 "扇形,其边缘由直线 \(y = (\alpha \pm \epsilon ) x\) 给出,其中 \(\epsilon = \epsilon _R \rightarrow 0\) 为 \( R \rightarrow \infty \)。我们建立了(S_{\alpha }(\epsilon ,R)\)的渐近计数,即位于这样一个扇形中的整数网格点的数目。我们的结果既取决于\(\epsilon \)的衰减率,也取决于\(\α \)的理性/非理性类型。特别是,我们证明了如果\(\alpha \)是二相的,那么\(S_{\alpha }(\epsilon ,R)\)是渐近于扇形面积的,只要\(\epsilon R^{t} \rightarrow \infty \)为某个\( t<2 \)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信