Pre-Schwarzian and Schwarzian norm estimates for subclasses of univalent functions

Xiaoyuan Wang, Huijie Li, Jinhua Fan
{"title":"Pre-Schwarzian and Schwarzian norm estimates for subclasses of univalent functions","authors":"Xiaoyuan Wang, Huijie Li, Jinhua Fan","doi":"10.1007/s00605-024-01971-1","DOIUrl":null,"url":null,"abstract":"<p>In the present article, we are focused to study the sharp estimates of the pre-Schwarzian and Schwarzian norms for subclasses of univalent functions. We will generalize the results of Carrasco and Hernández (Anal Math Phys 13(2):22, 2023) to the case of Janowski convex mappings in terms of the value <span>\\(h^{\\prime \\prime }(0)\\)</span>. We will also derive the sharp bound of pre-Schwarzian norm for a subclass of harmonic mappings whose fixed analytic part is a convex function of order <span>\\(\\alpha (0 \\le \\alpha &lt;1)\\)</span>.</p>","PeriodicalId":18913,"journal":{"name":"Monatshefte für Mathematik","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monatshefte für Mathematik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00605-024-01971-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the present article, we are focused to study the sharp estimates of the pre-Schwarzian and Schwarzian norms for subclasses of univalent functions. We will generalize the results of Carrasco and Hernández (Anal Math Phys 13(2):22, 2023) to the case of Janowski convex mappings in terms of the value \(h^{\prime \prime }(0)\). We will also derive the sharp bound of pre-Schwarzian norm for a subclass of harmonic mappings whose fixed analytic part is a convex function of order \(\alpha (0 \le \alpha <1)\).

单值函数子类的前施瓦兹和施瓦兹规范估计值
在本文中,我们将重点研究单值函数子类的前施瓦兹规范和施瓦兹规范的尖锐估计。我们将把 Carrasco 和 Hernández (Anal Math Phys 13(2):22, 2023) 的结果推广到 Janowski 凸映射的情况,即值 \(h^\{prime \prime }(0)\)。我们还将推导出固定解析部分是阶为 \(α (0 \le \alpha <1)\)的凸函数的调和映射子类的前施瓦茨规范的尖界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信