Some properties of new general fractal measures

Rim Achour, Bilel Selmi
{"title":"Some properties of new general fractal measures","authors":"Rim Achour, Bilel Selmi","doi":"10.1007/s00605-024-01979-7","DOIUrl":null,"url":null,"abstract":"<p>In this research, we adopt a comprehensive approach to address the multifractal and fractal analysis problem. We introduce a novel definition for the general Hausdorff and packing measures by considering sums involving certain functions and variables. Specifically, we explore the sums of the form </p><span>$$\\begin{aligned} \\sum \\limits _i h^{-1}\\Big (q h\\big (\\mu \\bigl (B(x_i,r_i)\\bigl )\\big )+tg(r_i)\\Big ), \\end{aligned}$$</span><p>where <span>\\(\\mu \\)</span> represents a Borel probability measure on <span>\\(\\mathbb R^d\\)</span>, and <i>q</i> and <i>t</i> are real numbers. The functions <i>h</i> and <i>g</i> are predetermined and play a significant role in our proposed intrinsic definition. Our observation reveals that estimating Hausdorff and packing pre-measures is significantly easier than estimating the exact Hausdorff and packing measures. Therefore, it is natural and essential to explore the relationships between the Hausdorff and packing pre-measures and their corresponding measures. This investigation constitutes the primary objective of this paper. Additionally, the secondary aim is to establish that, in the case of finite pre-measures, they possess a form of outer regularity in a metric space <i>X</i> that is not limited to a specific context or framework.</p>","PeriodicalId":18913,"journal":{"name":"Monatshefte für Mathematik","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monatshefte für Mathematik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00605-024-01979-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this research, we adopt a comprehensive approach to address the multifractal and fractal analysis problem. We introduce a novel definition for the general Hausdorff and packing measures by considering sums involving certain functions and variables. Specifically, we explore the sums of the form

$$\begin{aligned} \sum \limits _i h^{-1}\Big (q h\big (\mu \bigl (B(x_i,r_i)\bigl )\big )+tg(r_i)\Big ), \end{aligned}$$

where \(\mu \) represents a Borel probability measure on \(\mathbb R^d\), and q and t are real numbers. The functions h and g are predetermined and play a significant role in our proposed intrinsic definition. Our observation reveals that estimating Hausdorff and packing pre-measures is significantly easier than estimating the exact Hausdorff and packing measures. Therefore, it is natural and essential to explore the relationships between the Hausdorff and packing pre-measures and their corresponding measures. This investigation constitutes the primary objective of this paper. Additionally, the secondary aim is to establish that, in the case of finite pre-measures, they possess a form of outer regularity in a metric space X that is not limited to a specific context or framework.

新的一般分形度量的一些特性
在这项研究中,我们采用了一种综合方法来解决多分形和分形分析问题。通过考虑涉及某些函数和变量的和,我们为一般豪斯多夫和堆积度量引入了一个新定义。具体来说,我们探讨了$$\begin{aligned}形式的和。\sum \limits _i h^{-1}\Big (q h\big (\mu \bigl (B(x_i,r_i)\bigl )\big )+tg(r_i)\Big ), \end{aligned}$$ 其中 \(\mu \)表示\(\mathbb R^d\)上的伯尔概率度量,q 和 t 是实数。函数 h 和 g 是预先确定的,在我们提出的内在定义中起着重要作用。我们的观察发现,估计 Hausdorff 和 packing 预度量要比估计精确的 Hausdorff 和 packing 度量容易得多。因此,探索 Hausdorff 和 packing 预度量与其相应度量之间的关系是自然而必要的。这一研究构成了本文的首要目标。此外,本文的次要目的是确定,在有限预度量的情况下,它们在度量空间 X 中具有一种形式的外部正则性,而这种正则性并不局限于特定的背景或框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信