Nature chemistry最新文献

筛选
英文 中文
Dynamic amine sorting enables multiselective construction of unsymmetrical chiral diamines 动态胺分选实现了不对称手性二胺的多选择性构建
IF 19.2 1区 化学
Nature chemistry Pub Date : 2024-11-18 DOI: 10.1038/s41557-024-01673-z
Shoule Cai, Zeyu Zhao, Guoqing Yang, Hanmin Huang
{"title":"Dynamic amine sorting enables multiselective construction of unsymmetrical chiral diamines","authors":"Shoule Cai, Zeyu Zhao, Guoqing Yang, Hanmin Huang","doi":"10.1038/s41557-024-01673-z","DOIUrl":"10.1038/s41557-024-01673-z","url":null,"abstract":"Precisely differentiating chemicals featuring minor discrepancies is the prerequisite for achieving high selectivities in both chemical synthesis and biological activities. However, efficient strategies to differentiate and sort such congeneric compounds are lacking, posing daunting challenges for synthetic endeavours aimed at their orderly incorporation. Here we report a dynamic amine-sorting strategy that incorporates the chemoselective formation of the aminomethyl cyclopalladated complex to achieve the efficient differentiation of amine congeners. A series of amines sharing similar three-dimensional structures and properties, as well as possessing notoriously strong binding ability to metals, can be efficiently differentiated, enabling the highly chemo-, regio- and enantioselective multicomponent aminomethylamination of dienes to construct a variety of unsymmetrical chiral diamines. This dynamic amine-sorting strategy tackles the long-standing challenge of precise differentiation and orderly incorporation of aliphatic amines with subtle differences. From a broader perspective, the success demonstrates that meticulously designed metal complexes can provide flexible and general solutions for controlling delicate selectivities in sophisticated synthesis. Efficient strategies to differentiate and sort congeneric compounds are lacking. Now a metal-mediated dynamic amine-sorting strategy has been developed to precisely differentiate and assemble different amine congeners in an orderly manner, facilitating highly chemo-, regio- and enantioselective aminomethylamination of dienes for the construction of unsymmetrical chiral diamines.","PeriodicalId":18909,"journal":{"name":"Nature chemistry","volume":"16 12","pages":"1972-1981"},"PeriodicalIF":19.2,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pore configuration control in hybrid azolate ultra-microporous frameworks for sieving propylene from propane 用于筛分丙烷中丙烯的混合叠氮化物超微孔框架的孔构型控制
IF 19.2 1区 化学
Nature chemistry Pub Date : 2024-11-15 DOI: 10.1038/s41557-024-01672-0
Yong-Jun Tian, Chenghua Deng, Li Zhao, Jin-Sheng Zou, Xue-Cui Wu, Yanan Jia, Ze-Yang Zhang, Jie Zhang, Yun-Lei Peng, Guangjin Chen, Michael J. Zaworotko
{"title":"Pore configuration control in hybrid azolate ultra-microporous frameworks for sieving propylene from propane","authors":"Yong-Jun Tian, Chenghua Deng, Li Zhao, Jin-Sheng Zou, Xue-Cui Wu, Yanan Jia, Ze-Yang Zhang, Jie Zhang, Yun-Lei Peng, Guangjin Chen, Michael J. Zaworotko","doi":"10.1038/s41557-024-01672-0","DOIUrl":"10.1038/s41557-024-01672-0","url":null,"abstract":"Developing porous adsorbents for the complete sieving of propylene/propane mixtures represents an alternative method to energy-intensive cryogenic distillation processes. However, the similar physical properties of these molecules and the inherent trade-off among adsorption capacity, selectivity, diffusion kinetic and host–guest binding interactions in molecular sieving adsorbents makes their separation challenging. Here we report the separation of propylene/propane mixtures through a crystalline porous material (HAF-1) that features channels and shrinkage throats—the latter defined as narrower channels that connect the main channels and a molecular pocket—where the throat aperture is between the kinetic diameters of propylene and propane. Single-crystal X-ray diffraction and computational simulation reveal that the shrinkage channels and hanging molecular pockets are key to ensure high sieving efficiency and high propylene adsorption capacity. Dynamic breakthrough experiments show that HAF-1 enables the achievement of high-purity (≥99.7%) propylene with a productivity of 33.9 l kg−1 by just one adsorption–desorption circle from propylene/propane mixtures. Propylene and propane have similar physicochemical properties, and thus their separation is challenging. Now, as an alternative to energy-intensive cryogenic distillation methods, a molecular sieving adsorbent with high propylene adsorption capacity has been shown to sieve propylene from propylene/propane mixtures to yield high-purity propylene.","PeriodicalId":18909,"journal":{"name":"Nature chemistry","volume":"17 1","pages":"141-147"},"PeriodicalIF":19.2,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142637021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular-scale dissipative chemistry drives the formation of nanoscale assemblies and their macroscale transport 分子尺度的耗散化学推动了纳米尺度集合体的形成及其宏观传输。
IF 19.2 1区 化学
Nature chemistry Pub Date : 2024-11-08 DOI: 10.1038/s41557-024-01665-z
Kai Liu, Alex W. P. Blokhuis, Sietse J. Dijt, Juntian Wu, Shana Hamed, Armin Kiani, Bartosz M. Matysiak, Sijbren Otto
{"title":"Molecular-scale dissipative chemistry drives the formation of nanoscale assemblies and their macroscale transport","authors":"Kai Liu, Alex W. P. Blokhuis, Sietse J. Dijt, Juntian Wu, Shana Hamed, Armin Kiani, Bartosz M. Matysiak, Sijbren Otto","doi":"10.1038/s41557-024-01665-z","DOIUrl":"10.1038/s41557-024-01665-z","url":null,"abstract":"Fuelled chemical systems have considerable functional potential that remains largely unexplored. Here we report an approach to transient amide bond formation and use it to harness chemical energy and convert it to mechanical motion by integrating dissipative self-assembly and the Marangoni effect in a source–sink system. Droplets are formed through dissipative self-assembly following the reaction of octylamine with 2,3-dimethylmaleic anhydride. The resulting amides are hydrolytically labile, making the droplets transient, which enables them to act as a source of octylamine. A sink for octylamine was created by placing a drop of oleic acid at the air–water interface. This source–sink system sets up a gradient in surface tension, which gives rise to a macroscopic Marangoni flow that can transport the droplets in solution with tunable speed. Carbodiimides can fuel this motion by converting diacid waste back to anhydride. This study shows how fuelling at the molecular level can, via assembly at the supramolecular level, lead to liquid flow at the macroscopic level. The use of molecules as fuels to achieve function is largely unexplored. Now it has been shown that fuelled dissipative self-assembly can yield transient droplets that release a surfactant, driving the macroscopic transport of these droplets.","PeriodicalId":18909,"journal":{"name":"Nature chemistry","volume":"17 1","pages":"124-131"},"PeriodicalIF":19.2,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142623932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spatiotemporal protein interactome profiling through condensation-enhanced photocrosslinking 通过缩聚增强光交联技术绘制时空蛋白质相互作用组图谱
IF 19.2 1区 化学
Nature chemistry Pub Date : 2024-11-05 DOI: 10.1038/s41557-024-01663-1
Kexin Li, Xiao Xie, Rui Gao, Zhaoming Chen, Mingdong Yang, Zhihui Wen, Yicheng Weng, Xinyuan Fan, Gong Zhang, Lu Liu, Xiangmei Zeng, Yu Han, Mengrui Cao, Xin Wang, Jiaofeng Li, Zhenlin Yang, Tingting Li, Peng R. Chen
{"title":"Spatiotemporal protein interactome profiling through condensation-enhanced photocrosslinking","authors":"Kexin Li, Xiao Xie, Rui Gao, Zhaoming Chen, Mingdong Yang, Zhihui Wen, Yicheng Weng, Xinyuan Fan, Gong Zhang, Lu Liu, Xiangmei Zeng, Yu Han, Mengrui Cao, Xin Wang, Jiaofeng Li, Zhenlin Yang, Tingting Li, Peng R. Chen","doi":"10.1038/s41557-024-01663-1","DOIUrl":"10.1038/s41557-024-01663-1","url":null,"abstract":"Resolving protein–protein interactions (PPIs) inside biomolecular condensates is crucial for elucidating their functions and regulation mechanisms. The transient nature of condensates and the multiple localizations of clients, however, have rendered it challenging to determine compartment-specific PPIs. Here we developed a condensation-enhanced, spatially directed, metabolic incorporation-assisted photocrosslinking strategy—termed DenseMAP—for spatiotemporally resolved dissection of the direct protein interactome within condensates. By leveraging our condensation-enhanced photocrosslinker and the spatially directed biotin tagging, DenseMAP enabled stress-granule-specific interactome mapping of the N6-methyladenosine readers YTHDF1 and YTHDF2, and uncovered the functional role of phosphorylation on the SARS-CoV-2 nucleocapsid protein in regulating virus replication. Further applying DenseMAP for direct interactome mapping of the subcompartmental scaffold protein NPM1 deciphered nucleolar granular component proteome, and unveiled the critical role of SUMOylation in controlling nucleolar proteome homeostasis. DenseMAP provides a platform technology for analysing functional PPI networks within subcellular and subcompartmental condensates under diverse physiological and/or pathological settings. Now a generalizable method that couples spatially directed tagging with condensation-enhanced crosslinking—termed DenseMAP—has been developed for profiling the spatiotemporal protein interactome within biomolecular condensates. By linking the information between protein interactions and subcellular locations, DenseMAP has uncovered regulatory mechanisms in subcellular and subcompartmental condensates.","PeriodicalId":18909,"journal":{"name":"Nature chemistry","volume":"17 1","pages":"111-123"},"PeriodicalIF":19.2,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142580178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ubiquitin is a chemist’s playground 泛素是化学家的乐园
IF 19.2 1区 化学
Nature chemistry Pub Date : 2024-10-31 DOI: 10.1038/s41557-024-01660-4
Jakob Farnung, Brenda A. Schulman
{"title":"Ubiquitin is a chemist’s playground","authors":"Jakob Farnung, Brenda A. Schulman","doi":"10.1038/s41557-024-01660-4","DOIUrl":"10.1038/s41557-024-01660-4","url":null,"abstract":"Jakob Farnung and Brenda Schulman detail chemical diversification that endows the protein ubiquitin with many important cellular functions.","PeriodicalId":18909,"journal":{"name":"Nature chemistry","volume":"16 11","pages":"1918-1918"},"PeriodicalIF":19.2,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142556366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Protocells by spontaneous reaction of cysteine with short-chain thioesters 半胱氨酸与短链硫酯的自发反应产生原电池
IF 19.2 1区 化学
Nature chemistry Pub Date : 2024-10-30 DOI: 10.1038/s41557-024-01666-y
Christy J. Cho, Taeyang An, Yei-Chen Lai, Alberto Vázquez-Salazar, Alessandro Fracassi, Roberto J. Brea, Irene A. Chen, Neal K. Devaraj
{"title":"Protocells by spontaneous reaction of cysteine with short-chain thioesters","authors":"Christy J. Cho, Taeyang An, Yei-Chen Lai, Alberto Vázquez-Salazar, Alessandro Fracassi, Roberto J. Brea, Irene A. Chen, Neal K. Devaraj","doi":"10.1038/s41557-024-01666-y","DOIUrl":"10.1038/s41557-024-01666-y","url":null,"abstract":"All known forms of life are composed of cells, whose boundaries are defined by lipid membranes that separate and protect cell contents from the environment. It is unknown how the earliest forms of life were compartmentalized. Several models have suggested a role for single-chain lipids such as fatty acids, but the membranes formed are often unstable, particularly when made from shorter alkyl chains (≤C8) that were probably more prevalent on prebiotic Earth. Here we show that the amino acid cysteine can spontaneously react with two short-chain (C8) thioesters to form diacyl lipids, generating protocell-like membrane vesicles. The three-component reaction takes place rapidly in water using low concentrations of reactants. Silica can catalyse the formation of protocells through a simple electrostatic mechanism. Several simple aminothiols react to form diacyl lipids, including short peptides. The protocells formed are compatible with functional ribozymes, suggesting that coupling of multiple short-chain precursors may have provided membrane building blocks during the early evolution of cells. It is unknown what lipids formed the membranes of early life forms. Now it has been shown that protocell vesicles can assemble from diacylcysteines, which form spontaneously from cysteine and short-chain thioesters. Silica catalyses membrane formation, and protocells formed from diacylcysteine lipids are compatible with ribozyme activity.","PeriodicalId":18909,"journal":{"name":"Nature chemistry","volume":"17 1","pages":"148-155"},"PeriodicalIF":19.2,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142541270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Remote chirality transfer in low-dimensional hybrid metal halide semiconductors 低维混合金属卤化物半导体中的远程手性转移
IF 19.2 1区 化学
Nature chemistry Pub Date : 2024-10-25 DOI: 10.1038/s41557-024-01662-2
Md Azimul Haque, Andrew Grieder, Steven P. Harvey, Roman Brunecky, Jiselle Y. Ye, Bennett Addison, Junxiang Zhang, Yifan Dong, Yi Xie, Matthew P. Hautzinger, Heshan Hewa Walpitage, Kai Zhu, Jeffrey L. Blackburn, Zeev Valy Vardeny, David B. Mitzi, Joseph J. Berry, Seth R. Marder, Yuan Ping, Matthew C. Beard, Joseph M. Luther
{"title":"Remote chirality transfer in low-dimensional hybrid metal halide semiconductors","authors":"Md Azimul Haque, Andrew Grieder, Steven P. Harvey, Roman Brunecky, Jiselle Y. Ye, Bennett Addison, Junxiang Zhang, Yifan Dong, Yi Xie, Matthew P. Hautzinger, Heshan Hewa Walpitage, Kai Zhu, Jeffrey L. Blackburn, Zeev Valy Vardeny, David B. Mitzi, Joseph J. Berry, Seth R. Marder, Yuan Ping, Matthew C. Beard, Joseph M. Luther","doi":"10.1038/s41557-024-01662-2","DOIUrl":"10.1038/s41557-024-01662-2","url":null,"abstract":"In hybrid metal halide perovskites, chiroptical properties typically arise from structural symmetry breaking by incorporating a chiral A-site organic cation within the structure, which may limit the compositional space. Here we demonstrate highly efficient remote chirality transfer where chirality is imposed on an otherwise achiral hybrid metal halide semiconductor by a proximal chiral molecule that is not interspersed as part of the structure yet leads to large circular dichroism dissymmetry factors (gCD) of up to 10−2. Density functional theory calculations reveal that the transfer of stereochemical information from the chiral proximal molecule to the inorganic framework is mediated by selective interaction with divalent metal cations. Anchoring of the chiral molecule induces a centro-asymmetric distortion, which is discernible up to four inorganic layers into the metal halide lattice. This concept is broadly applicable to low-dimensional hybrid metal halides with various dimensionalities (1D and 2D) allowing independent control of the composition and degree of chirality. Hybrid metal halide semiconductors typically rely on chiral A-site ammonium cations for chiral induction in the lattice. Now it has been shown that chirality in low-dimensional achiral metal halide semiconductors can be induced by non-ammonium, non-A-site chiral molecules through remote stereocontrol of the inorganic framework.","PeriodicalId":18909,"journal":{"name":"Nature chemistry","volume":"17 1","pages":"29-37"},"PeriodicalIF":19.2,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142489266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Supramolecular crystals for hydrogen storage 用于储氢的超分子晶体
IF 19.2 1区 化学
Nature chemistry Pub Date : 2024-10-23 DOI: 10.1038/s41557-024-01661-3
{"title":"Supramolecular crystals for hydrogen storage","authors":"","doi":"10.1038/s41557-024-01661-3","DOIUrl":"10.1038/s41557-024-01661-3","url":null,"abstract":"Adsorbents for efficient hydrogen storage require both a high gravimetric and volumetric storage capacity. A catenation strategy guided by hydrogen bonding is now demonstrated for the construction of supramolecular crystals with both high volumetric and large gravimetric surface areas, robustness and ideal pore diameters, which contribute to their good performance for hydrogen storage.","PeriodicalId":18909,"journal":{"name":"Nature chemistry","volume":"16 12","pages":"1941-1942"},"PeriodicalIF":19.2,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142487139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The chemical sciences need introverts too 化学科学也需要内向的人
IF 19.2 1区 化学
Nature chemistry Pub Date : 2024-10-23 DOI: 10.1038/s41557-024-01657-z
Bruce C. Gibb
{"title":"The chemical sciences need introverts too","authors":"Bruce C. Gibb","doi":"10.1038/s41557-024-01657-z","DOIUrl":"10.1038/s41557-024-01657-z","url":null,"abstract":"About two thirds of western society are extroverts, but the contemplative nature of science means that this is not true of the academic population. Bruce Gibb discusses extraversion and introversion in science and asks whether the movement towards larger projects involving teams of scientists is making it harder for introverts and for disruptive discoveries.","PeriodicalId":18909,"journal":{"name":"Nature chemistry","volume":"16 11","pages":"1737-1738"},"PeriodicalIF":19.2,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142487152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The original caretakers of salvinorin A and recognizing Indigenous contributions to science 丹参素 A 的原始守护者,承认土著人对科学的贡献
IF 19.2 1区 化学
Nature chemistry Pub Date : 2024-10-22 DOI: 10.1038/s41557-024-01659-x
Khalyd J. Clay, Ryan A. Shenvi
{"title":"The original caretakers of salvinorin A and recognizing Indigenous contributions to science","authors":"Khalyd J. Clay, Ryan A. Shenvi","doi":"10.1038/s41557-024-01659-x","DOIUrl":"10.1038/s41557-024-01659-x","url":null,"abstract":"Much natural-product-based drug discovery has depended on the practices of Indigenous Peoples, who have sometimes invested centuries of care into the cultivation and use of plant or fungal matter. However, the contributions of the original discoverers can be lost as the natural products are developed into pharmaceutical products.","PeriodicalId":18909,"journal":{"name":"Nature chemistry","volume":"16 11","pages":"1735-1736"},"PeriodicalIF":19.2,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142452441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信