Bright triplet and bright charge-separated singlet excitons in organic diradicals enable optical read-out and writing of spin states

IF 20.2 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Rituparno Chowdhury, Petri Murto, Naitik A. Panjwani, Yan Sun, Pratyush Ghosh, Yorrick Boeije, Chiara Delpiano Cordeiro, Vadim Derkach, Seung-Je Woo, Oliver Millington, Daniel G. Congrave, Yao Fu, Tarig B. E. Mustafa, Miguel Monteverde, Jesús Cerdá, Giacomo Londi, Jan Behrends, Akshay Rao, David Beljonne, Alexei Chepelianskii, Hugo Bronstein, Richard H. Friend
{"title":"Bright triplet and bright charge-separated singlet excitons in organic diradicals enable optical read-out and writing of spin states","authors":"Rituparno Chowdhury, Petri Murto, Naitik A. Panjwani, Yan Sun, Pratyush Ghosh, Yorrick Boeije, Chiara Delpiano Cordeiro, Vadim Derkach, Seung-Je Woo, Oliver Millington, Daniel G. Congrave, Yao Fu, Tarig B. E. Mustafa, Miguel Monteverde, Jesús Cerdá, Giacomo Londi, Jan Behrends, Akshay Rao, David Beljonne, Alexei Chepelianskii, Hugo Bronstein, Richard H. Friend","doi":"10.1038/s41557-025-01875-z","DOIUrl":null,"url":null,"abstract":"<p>Optical control of electron spin states is important for quantum sensing and computing applications, as developed with the diamond nitrogen vacancy centre. This requires electronic excitations, excitons, with net spin. Here we report a molecular diradical where two trityl radical groups are coupled via a meta-linked fluorene bridge. The singlet exciton is at lower energy than the triplet because electron transfer from one of the radical non-bonding orbitals to the other is spin allowed, set by the charging energy for the double occupancy of the non-bonding level, the Hubbard <i>U</i>. Both excitons give efficient photoluminescence at 640 and 700 nm with near unity efficiency. The ground state exchange energy is low, 60 µeV, allowing control of ground state spin populations. We demonstrate spin-selective intersystem crossing and show coherent microwave control. We report up to 8% photoluminescence contrast at microwave resonance. This tuning of the singlet Mott–Hubbard exciton against the ‘bandgap’ exciton provides a new design platform for spin–optical materials.</p><figure></figure>","PeriodicalId":18909,"journal":{"name":"Nature chemistry","volume":"37 1","pages":""},"PeriodicalIF":20.2000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1038/s41557-025-01875-z","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Optical control of electron spin states is important for quantum sensing and computing applications, as developed with the diamond nitrogen vacancy centre. This requires electronic excitations, excitons, with net spin. Here we report a molecular diradical where two trityl radical groups are coupled via a meta-linked fluorene bridge. The singlet exciton is at lower energy than the triplet because electron transfer from one of the radical non-bonding orbitals to the other is spin allowed, set by the charging energy for the double occupancy of the non-bonding level, the Hubbard U. Both excitons give efficient photoluminescence at 640 and 700 nm with near unity efficiency. The ground state exchange energy is low, 60 µeV, allowing control of ground state spin populations. We demonstrate spin-selective intersystem crossing and show coherent microwave control. We report up to 8% photoluminescence contrast at microwave resonance. This tuning of the singlet Mott–Hubbard exciton against the ‘bandgap’ exciton provides a new design platform for spin–optical materials.

Abstract Image

有机双自由基中明亮的三重态和明亮的电荷分离单线态激子使自旋态的光学读出和写入成为可能
电子自旋态的光学控制对于量子传感和计算应用非常重要,正如金刚石氮空位中心所发展的那样。这需要电子激发,激子,带净自旋。在这里,我们报告了一种分子双自由基,其中两个三烷基自由基通过一个间位连接的芴桥连接。单重态激子比三重态激子的能量低,因为电子从一个自由基非成键轨道转移到另一个是非成键轨道是允许自旋的,这是由非成键能级双占用的充电能量决定的,这两个激子在640和700 nm处都能以接近统一的效率产生有效的光致发光。基态交换能量低,为60µeV,可以控制基态自旋居数。我们展示了自旋选择性系统间交叉和相干微波控制。我们报道了高达8%的光致发光对比在微波共振。单线态Mott-Hubbard激子与“带隙”激子的调谐为自旋光学材料提供了一个新的设计平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature chemistry
Nature chemistry 化学-化学综合
CiteScore
29.60
自引率
1.40%
发文量
226
审稿时长
1.7 months
期刊介绍: Nature Chemistry is a monthly journal that publishes groundbreaking and significant research in all areas of chemistry. It covers traditional subjects such as analytical, inorganic, organic, and physical chemistry, as well as a wide range of other topics including catalysis, computational and theoretical chemistry, and environmental chemistry. The journal also features interdisciplinary research at the interface of chemistry with biology, materials science, nanotechnology, and physics. Manuscripts detailing such multidisciplinary work are encouraged, as long as the central theme pertains to chemistry. Aside from primary research, Nature Chemistry publishes review articles, news and views, research highlights from other journals, commentaries, book reviews, correspondence, and analysis of the broader chemical landscape. It also addresses crucial issues related to education, funding, policy, intellectual property, and the societal impact of chemistry. Nature Chemistry is dedicated to ensuring the highest standards of original research through a fair and rigorous review process. It offers authors maximum visibility for their papers, access to a broad readership, exceptional copy editing and production standards, rapid publication, and independence from academic societies and other vested interests. Overall, Nature Chemistry aims to be the authoritative voice of the global chemical community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信