Rituparno Chowdhury, Petri Murto, Naitik A. Panjwani, Yan Sun, Pratyush Ghosh, Yorrick Boeije, Chiara Delpiano Cordeiro, Vadim Derkach, Seung-Je Woo, Oliver Millington, Daniel G. Congrave, Yao Fu, Tarig B. E. Mustafa, Miguel Monteverde, Jesús Cerdá, Giacomo Londi, Jan Behrends, Akshay Rao, David Beljonne, Alexei Chepelianskii, Hugo Bronstein, Richard H. Friend
{"title":"Bright triplet and bright charge-separated singlet excitons in organic diradicals enable optical read-out and writing of spin states","authors":"Rituparno Chowdhury, Petri Murto, Naitik A. Panjwani, Yan Sun, Pratyush Ghosh, Yorrick Boeije, Chiara Delpiano Cordeiro, Vadim Derkach, Seung-Je Woo, Oliver Millington, Daniel G. Congrave, Yao Fu, Tarig B. E. Mustafa, Miguel Monteverde, Jesús Cerdá, Giacomo Londi, Jan Behrends, Akshay Rao, David Beljonne, Alexei Chepelianskii, Hugo Bronstein, Richard H. Friend","doi":"10.1038/s41557-025-01875-z","DOIUrl":null,"url":null,"abstract":"<p>Optical control of electron spin states is important for quantum sensing and computing applications, as developed with the diamond nitrogen vacancy centre. This requires electronic excitations, excitons, with net spin. Here we report a molecular diradical where two trityl radical groups are coupled via a meta-linked fluorene bridge. The singlet exciton is at lower energy than the triplet because electron transfer from one of the radical non-bonding orbitals to the other is spin allowed, set by the charging energy for the double occupancy of the non-bonding level, the Hubbard <i>U</i>. Both excitons give efficient photoluminescence at 640 and 700 nm with near unity efficiency. The ground state exchange energy is low, 60 µeV, allowing control of ground state spin populations. We demonstrate spin-selective intersystem crossing and show coherent microwave control. We report up to 8% photoluminescence contrast at microwave resonance. This tuning of the singlet Mott–Hubbard exciton against the ‘bandgap’ exciton provides a new design platform for spin–optical materials.</p><figure></figure>","PeriodicalId":18909,"journal":{"name":"Nature chemistry","volume":"37 1","pages":""},"PeriodicalIF":20.2000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1038/s41557-025-01875-z","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Optical control of electron spin states is important for quantum sensing and computing applications, as developed with the diamond nitrogen vacancy centre. This requires electronic excitations, excitons, with net spin. Here we report a molecular diradical where two trityl radical groups are coupled via a meta-linked fluorene bridge. The singlet exciton is at lower energy than the triplet because electron transfer from one of the radical non-bonding orbitals to the other is spin allowed, set by the charging energy for the double occupancy of the non-bonding level, the Hubbard U. Both excitons give efficient photoluminescence at 640 and 700 nm with near unity efficiency. The ground state exchange energy is low, 60 µeV, allowing control of ground state spin populations. We demonstrate spin-selective intersystem crossing and show coherent microwave control. We report up to 8% photoluminescence contrast at microwave resonance. This tuning of the singlet Mott–Hubbard exciton against the ‘bandgap’ exciton provides a new design platform for spin–optical materials.
期刊介绍:
Nature Chemistry is a monthly journal that publishes groundbreaking and significant research in all areas of chemistry. It covers traditional subjects such as analytical, inorganic, organic, and physical chemistry, as well as a wide range of other topics including catalysis, computational and theoretical chemistry, and environmental chemistry.
The journal also features interdisciplinary research at the interface of chemistry with biology, materials science, nanotechnology, and physics. Manuscripts detailing such multidisciplinary work are encouraged, as long as the central theme pertains to chemistry.
Aside from primary research, Nature Chemistry publishes review articles, news and views, research highlights from other journals, commentaries, book reviews, correspondence, and analysis of the broader chemical landscape. It also addresses crucial issues related to education, funding, policy, intellectual property, and the societal impact of chemistry.
Nature Chemistry is dedicated to ensuring the highest standards of original research through a fair and rigorous review process. It offers authors maximum visibility for their papers, access to a broad readership, exceptional copy editing and production standards, rapid publication, and independence from academic societies and other vested interests.
Overall, Nature Chemistry aims to be the authoritative voice of the global chemical community.