Nature Protocols最新文献

筛选
英文 中文
Biomarker analysis from complex biofluids by an on-chip chemically modified light-controlled vertical nanopillar array device.
IF 13.1 1区 生物学
Nature Protocols Pub Date : 2025-01-30 DOI: 10.1038/s41596-024-01124-6
Lanka Tata Rao, Adva Raz, Fernando Patolsky
{"title":"Biomarker analysis from complex biofluids by an on-chip chemically modified light-controlled vertical nanopillar array device.","authors":"Lanka Tata Rao, Adva Raz, Fernando Patolsky","doi":"10.1038/s41596-024-01124-6","DOIUrl":"https://doi.org/10.1038/s41596-024-01124-6","url":null,"abstract":"<p><p>Nanostructured devices have proven useful in a broad range of applications, from diagnosing diseases to discovering and screening new drug molecules. We developed vertical silicon nanopillar (SiNP) arrays for on-chip multiplex capture of selected biomolecules using a light-induced release of the array's selectively captured biomarkers. This platform allows the rapid, reusable and quantitative capture and release of a selection of biomarkers, followed by their downstream analysis. Here we outline a standardized protocol for producing the SiNP-based capture-and-release device, which involves the detailed fabrication steps for single-zone nanopillar arrays, their morphological characterization and the chemical modification procedures applied for the anchoring of selective bioreceptors together with the light-controlled on-demand release of the chemical agent. In addition, we provide a detailed approach for the fabrication of a multizone-SiNP array, allowing the simultaneous capture and release of multiple biomarkers of interest. Finally, we demonstrate the entire process of selective and quantitative capture and release of biomolecules from biosamples by means of a commercial low-volume microplate reader system, using green fluorescent protein as a biomarker example. The entire protocol can be conducted within 45 h and requires knowledge in nanoscience, surface chemistry, device micro- and nanofabrication procedures, microfluidics and protein quantification techniques. These SiNP array devices have already demonstrated applications for highly selective and quantitative analysis of a wide range of biological and chemical species, including proteins, nucleic acids, small molecules and ionic species.</p>","PeriodicalId":18901,"journal":{"name":"Nature Protocols","volume":" ","pages":""},"PeriodicalIF":13.1,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143066079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A multimodal imaging pipeline to decipher cell-specific metabolic functions and tissue microenvironment dynamics.
IF 13.1 1区 生物学
Nature Protocols Pub Date : 2025-01-29 DOI: 10.1038/s41596-024-01118-4
Sharavan Vishaan Venkateswaran, Peter Kreuzaler, Catherine Maclachlan, Greg McMahon, Gina Greenidge, Lucy Collinson, Josephine Bunch, Mariia Yuneva
{"title":"A multimodal imaging pipeline to decipher cell-specific metabolic functions and tissue microenvironment dynamics.","authors":"Sharavan Vishaan Venkateswaran, Peter Kreuzaler, Catherine Maclachlan, Greg McMahon, Gina Greenidge, Lucy Collinson, Josephine Bunch, Mariia Yuneva","doi":"10.1038/s41596-024-01118-4","DOIUrl":"https://doi.org/10.1038/s41596-024-01118-4","url":null,"abstract":"<p><p>Tissue microenvironments are extremely complex and heterogeneous. It is challenging to study metabolic interaction between the different cell types in a tissue with the techniques that are currently available. Here we describe a multimodal imaging pipeline that allows cell type identification and nanoscale tracing of stable isotope-labeled compounds. This pipeline extends upon the principles of correlative light, electron and ion microscopy, by combining confocal microscopy reporter or probe-based fluorescence, electron microscopy, stable isotope labeling and nanoscale secondary ion mass spectrometry. We apply this method to murine models of hepatocellular and mammary gland carcinomas to study uptake of glucose derived carbon (<sup>13</sup>C) and glutamine derived nitrogen (<sup>15</sup>N) by tumor-associated immune cells. In vivo labeling with fluorescent-tagged antibodies (B220, CD3, CD8a, CD68) in tandem with confocal microscopy allows for the identification of specific cell types (B cells, T cells and macrophages) in the tumor microenvironment. Subsequent image correlation with electron microscopy offers the contrast and resolution to image membranes and organelles. Nanoscale secondary ion mass spectrometry tracks the enrichment of stable isotopes within these intracellular compartments. The whole protocol described here would take ~6 weeks to perform from start to finish. Our pipeline caters to a broad spectrum of applications as it can easily be adapted to trace the uptake and utilization of any stable isotope-labeled nutrient, drug or a probe by defined cellular populations in any tissue in situ.</p>","PeriodicalId":18901,"journal":{"name":"Nature Protocols","volume":" ","pages":""},"PeriodicalIF":13.1,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143066052","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
fMRI data acquisition and analysis for task-free, anesthetized rats.
IF 13.1 1区 生物学
Nature Protocols Pub Date : 2025-01-28 DOI: 10.1038/s41596-024-01110-y
Roël M Vrooman, Monica van den Berg, Gabriel Desrosiers-Gregoire, Wessel A van Engelenburg, Marie E Galteau, Sung-Ho Lee, Andor Veltien, David A Barrière, Diana Cash, M Mallar Chakravarty, Gabriel A Devenyi, Alessandro Gozzi, Olli Gröhn, Andreas Hess, Judith R Homberg, Ileana O Jelescu, Georgios A Keliris, Tom Scheenen, Yen-Yu Ian Shih, Marleen Verhoye, Claire Wary, Marcel Zwiers, Joanes Grandjean
{"title":"fMRI data acquisition and analysis for task-free, anesthetized rats.","authors":"Roël M Vrooman, Monica van den Berg, Gabriel Desrosiers-Gregoire, Wessel A van Engelenburg, Marie E Galteau, Sung-Ho Lee, Andor Veltien, David A Barrière, Diana Cash, M Mallar Chakravarty, Gabriel A Devenyi, Alessandro Gozzi, Olli Gröhn, Andreas Hess, Judith R Homberg, Ileana O Jelescu, Georgios A Keliris, Tom Scheenen, Yen-Yu Ian Shih, Marleen Verhoye, Claire Wary, Marcel Zwiers, Joanes Grandjean","doi":"10.1038/s41596-024-01110-y","DOIUrl":"https://doi.org/10.1038/s41596-024-01110-y","url":null,"abstract":"<p><p>Templates for the acquisition of large datasets such as the Human Connectome Project guide the neuroimaging community to reproducible data acquisition and scientific rigor. By contrast, small animal neuroimaging often relies on laboratory-specific protocols, which limit cross-study comparisons. The establishment of broadly validated protocols may facilitate the acquisition of large datasets, which are essential for uncovering potentially small effects often seen in functional MRI (fMRI) studies. Here, we outline a procedure for the acquisition of fMRI datasets in rats and describe animal handling, MRI sequence parameters, data conversion, preprocessing, quality control and data analysis. The procedure is designed to be generalizable across laboratories, has been validated by using datasets across 20 research centers with different scanners and field strengths ranging from 4.7 to 17.2 T and can be used in studies in which it is useful to compare functional connectivity measures across an extensive range of datasets. The MRI procedure requires 1 h per rat to complete and can be carried out by users with limited expertise in rat handling, MRI and data processing.</p>","PeriodicalId":18901,"journal":{"name":"Nature Protocols","volume":" ","pages":""},"PeriodicalIF":13.1,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143059667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A multifunctional sensor for cell traction force, matrix remodeling and biomechanical assays in self-assembled 3D tissues in vitro.
IF 13.1 1区 生物学
Nature Protocols Pub Date : 2025-01-24 DOI: 10.1038/s41596-024-01106-8
Bashar Emon, Md Saddam Hossain Joy, William C Drennan, M Taher A Saif
{"title":"A multifunctional sensor for cell traction force, matrix remodeling and biomechanical assays in self-assembled 3D tissues in vitro.","authors":"Bashar Emon, Md Saddam Hossain Joy, William C Drennan, M Taher A Saif","doi":"10.1038/s41596-024-01106-8","DOIUrl":"https://doi.org/10.1038/s41596-024-01106-8","url":null,"abstract":"<p><p>Cell-matrix interactions, mediated by cellular force and matrix remodeling, result in dynamic reciprocity that drives numerous biological processes and disease progression. Currently, there is no available method for directly quantifying cell traction force and matrix remodeling in three-dimensional matrices as a function of time. To address this long-standing need, we developed a high-resolution microfabricated device that enables longitudinal measurement of cell force, matrix stiffness and the application of mechanical stimulation (tension or compression) to cells. Here a specimen comprising of cells and matrix self-assembles and self-integrates with the sensor. With primary fibroblasts, cancer cells and neurons we have demonstrated the feasibility of the sensor by measuring single or multiple cell force with a resolution of 1 nN and changes in tissue stiffness due to matrix remodeling by the cells. The sensor can also potentially be translated into a high-throughput system for clinical assays such as patient-specific drug and phenotypic screening. We present the detailed protocol for manufacturing the sensors, preparing experimental setup, developing assays with different tissues and for imaging and analyzing the data. Apart from microfabrication of the molds in a cleanroom (one time operation), this protocol does not require any specialized skillset and can be completed within 4-5 h.</p>","PeriodicalId":18901,"journal":{"name":"Nature Protocols","volume":" ","pages":""},"PeriodicalIF":13.1,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143039181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Photothermal nanofiber-mediated photoporation for gentle and efficient intracellular delivery of macromolecules.
IF 13.1 1区 生物学
Nature Protocols Pub Date : 2025-01-22 DOI: 10.1038/s41596-024-01115-7
Dongyang Miao, Yuanyuan Song, Stijn De Munter, Huining Xiao, Bart Vandekerckhove, Stefaan C De Smedt, Chaobo Huang, Kevin Braeckmans, Ranhua Xiong
{"title":"Photothermal nanofiber-mediated photoporation for gentle and efficient intracellular delivery of macromolecules.","authors":"Dongyang Miao, Yuanyuan Song, Stijn De Munter, Huining Xiao, Bart Vandekerckhove, Stefaan C De Smedt, Chaobo Huang, Kevin Braeckmans, Ranhua Xiong","doi":"10.1038/s41596-024-01115-7","DOIUrl":"https://doi.org/10.1038/s41596-024-01115-7","url":null,"abstract":"<p><p>Photoporation with free photothermal nanoparticles (NPs) is a promising technology for gentle delivery of functional biomacromolecules into living cells, offering great flexibility in terms of cell types and payload molecules. However, the translational use of photoporation, such as for transfecting patient-derived cells for cell therapies, is hampered by safety and regulatory concerns as it relies on direct contact between cells and photothermal NPs. A solution is to embed the photothermal NPs in electrospun nanofibers, which form a substrate for cell culture. Here we present a protocol for photothermal electrospun nanofiber (PEN)-mediated photoporation that induces membrane permeabilization by photothermal effects and enables efficient intracellular delivery of payload molecules into various cell types. By incorporating photothermal NPs within biocompatible electrospun nanofibers, direct cellular contact with NPs is avoided, thus largely mitigating safety or regulatory issues. Importantly, PEN photoporation is gentler to cells compared with electroporation, the most commonly used physical transfection method, resulting in higher-quality genetically engineered cells with better therapeutic potential. According to this protocol, it takes 2-3 d to prepare PEN culture wells with the desired cells, 3-4 d to optimize PEN photoporation parameters for intracellular delivery of payload molecules into different cell types in vitro and 4-5 weeks to evaluate the in vivo therapeutic efficacy of PEN-photoporated T cells. The protocol also provides details on how to construct the laser-based setup for performing photoporation experiments.</p>","PeriodicalId":18901,"journal":{"name":"Nature Protocols","volume":" ","pages":""},"PeriodicalIF":13.1,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143024023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fabrication of nonplanar tapered fibers to integrate optical and electrical signals for neural interfaces in vivo.
IF 13.1 1区 生物学
Nature Protocols Pub Date : 2025-01-22 DOI: 10.1038/s41596-024-01105-9
Antonio Balena, Marco Bianco, Maria Samuela Andriani, Cinzia Montinaro, Barbara Spagnolo, Marco Pisanello, Filippo Pisano, Bernardo L Sabatini, Massimo De Vittorio, Ferruccio Pisanello
{"title":"Fabrication of nonplanar tapered fibers to integrate optical and electrical signals for neural interfaces in vivo.","authors":"Antonio Balena, Marco Bianco, Maria Samuela Andriani, Cinzia Montinaro, Barbara Spagnolo, Marco Pisanello, Filippo Pisano, Bernardo L Sabatini, Massimo De Vittorio, Ferruccio Pisanello","doi":"10.1038/s41596-024-01105-9","DOIUrl":"https://doi.org/10.1038/s41596-024-01105-9","url":null,"abstract":"<p><p>Implantable multifunctional probes have transformed neuroscience research, offering access to multifaceted brain activity that was previously unattainable. Typically, simultaneous access to both optical and electrical signals requires separate probes, while their integration into a single device can result in the emergence of photogenerated electrical artifacts, affecting the quality of high-frequency neural recordings. Among the nontrivial strategies aimed at the realization of an implantable multifunctional interface, the integration of optical and electrical capabilities on a single, minimally invasive, tapered optical fiber probe has been recently demonstrated using fibertrodes. Fibertrodes require the application of a set of planar microfabrication techniques to a nonplanar system with low and nonconstant curvature radius. Here we develop a process based on multiple conformal depositions, nonplanar two-photon lithography and chemical wet etching steps to obtain metallic patterns on the highly curved surface of the fiber taper. We detail the manufacturing, encapsulation and back end of the fibertrodes. The design of the probe can be adapted for different experimental requirements. Using the optical setup design, it is possible to perform angle selective light coupling with the fibertrodes and their implantation and use in vivo. The fabrication of fibertrodes is estimated to require 5-9 d. Nonetheless, due to the high scalability of a large part of the protocol, the manufacture of multiple fibertrodes simultaneously substantially reduces the required time for each probe. The procedure is suitable for users with expertise in microfabrication of electronics and neural recordings.</p>","PeriodicalId":18901,"journal":{"name":"Nature Protocols","volume":" ","pages":""},"PeriodicalIF":13.1,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143024020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An accessible workflow for high-sensitivity proteomics using parallel accumulation-serial fragmentation (PASEF). 使用平行积累-序列片段(PASEF)的高灵敏度蛋白质组学可访问的工作流程。
IF 13.1 1区 生物学
Nature Protocols Pub Date : 2025-01-17 DOI: 10.1038/s41596-024-01104-w
Patricia Skowronek, Georg Wallmann, Maria Wahle, Sander Willems, Matthias Mann
{"title":"An accessible workflow for high-sensitivity proteomics using parallel accumulation-serial fragmentation (PASEF).","authors":"Patricia Skowronek, Georg Wallmann, Maria Wahle, Sander Willems, Matthias Mann","doi":"10.1038/s41596-024-01104-w","DOIUrl":"https://doi.org/10.1038/s41596-024-01104-w","url":null,"abstract":"<p><p>Deep and accurate proteome analysis is crucial for understanding cellular processes and disease mechanisms; however, it is challenging to implement in routine settings. In this protocol, we combine a robust chromatographic platform with a high-performance mass spectrometric setup to enable routine yet in-depth proteome coverage for a broad community. This entails tip-based sample preparation and pre-formed gradients (Evosep One) combined with a trapped ion mobility time-of-flight mass spectrometer (timsTOF, Bruker). The timsTOF enables parallel accumulation-serial fragmentation (PASEF), in which ions are accumulated and separated by their ion mobility, maximizing ion usage and simplifying spectra. Combined with data-independent acquisition (DIA), it offers high peak sampling rates and near-complete ion coverage. Here, we explain how to balance quantitative accuracy, specificity, proteome coverage and sensitivity by choosing the best PASEF and DIA method parameters. The protocol describes how to set up the liquid chromatography-mass spectrometry system and enables PASEF method generation and evaluation for varied samples by using the py_diAID tool to optimally position isolation windows in the mass-to-charge and ion mobility space. Biological projects (e.g., triplicate proteome analysis in two conditions) can be performed in 3 d with ~3 h of hands-on time and minimal marginal cost. This results in reproducible quantification of 7,000 proteins in a human cancer cell line in quadruplicate 21-min injections and 29,000 phosphosites for phospho-enriched quadruplicates. Synchro-PASEF, a highly efficient, specific and novel scan mode, can be analyzed by Spectronaut or AlphaDIA, resulting in superior quantitative reproducibility because of its high sampling efficiency.</p>","PeriodicalId":18901,"journal":{"name":"Nature Protocols","volume":" ","pages":""},"PeriodicalIF":13.1,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143008630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Generating allogeneic CAR-NKT cells for off-the-shelf cancer immunotherapy with genetically engineered HSP cells and feeder-free differentiation culture. 用基因工程HSP细胞和无饲料分化培养产生用于现成癌症免疫治疗的同种异体CAR-NKT细胞。
IF 13.1 1区 生物学
Nature Protocols Pub Date : 2025-01-17 DOI: 10.1038/s41596-024-01077-w
Yan-Ruide Li, Kuangyi Zhou, Derek Lee, Yichen Zhu, Tyler Halladay, Jiaji Yu, Yang Zhou, Zibai Lyu, Ying Fang, Yuning Chen, Sasha Semaan, Lili Yang
{"title":"Generating allogeneic CAR-NKT cells for off-the-shelf cancer immunotherapy with genetically engineered HSP cells and feeder-free differentiation culture.","authors":"Yan-Ruide Li, Kuangyi Zhou, Derek Lee, Yichen Zhu, Tyler Halladay, Jiaji Yu, Yang Zhou, Zibai Lyu, Ying Fang, Yuning Chen, Sasha Semaan, Lili Yang","doi":"10.1038/s41596-024-01077-w","DOIUrl":"https://doi.org/10.1038/s41596-024-01077-w","url":null,"abstract":"<p><p>The clinical potential of current chimeric antigen receptor-engineered T (CAR-T) cell therapy is hampered by its autologous nature that poses considerable challenges in manufacturing, costs and patient selection. This spurs demand for off-the-shelf therapies. Here we introduce an ex vivo feeder-free culture method to differentiate gene-engineered hematopoietic stem and progenitor (HSP) cells into allogeneic invariant natural killer T (<sup>Allo</sup>NKT) cells and their CAR-armed derivatives (<sup>Allo</sup>CAR-NKT cells). We include detailed information on lentivirus generation and titration, as well as the five stages of ex vivo culture required to generate <sup>Allo</sup>CAR-NKT cells, including HSP cell engineering, HSP cell expansion, NKT cell differentiation, NKT cell deep differentiation and NKT cell expansion. In addition, we describe procedures for evaluating the pharmacology, antitumor efficacy and mechanism of action of <sup>Allo</sup>CAR-NKT cells. It takes ~2 weeks to generate and titrate lentiviruses and ~6 weeks to generate mature <sup>Allo</sup>CAR-NKT cells. Competence with human stem cell and T cell culture, gene engineering and flow cytometry is required for optimal results.</p>","PeriodicalId":18901,"journal":{"name":"Nature Protocols","volume":" ","pages":""},"PeriodicalIF":13.1,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143008632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PEPPI-MS: gel-based sample pre-fractionation for deep top-down and middle-down proteomics. PEPPI-MS:凝胶样品预分离,用于深层自上而下和中向下的蛋白质组学。
IF 13.1 1区 生物学
Nature Protocols Pub Date : 2025-01-16 DOI: 10.1038/s41596-024-01100-0
Ayako Takemori, Philipp T Kaulich, Andreas Tholey, Nobuaki Takemori
{"title":"PEPPI-MS: gel-based sample pre-fractionation for deep top-down and middle-down proteomics.","authors":"Ayako Takemori, Philipp T Kaulich, Andreas Tholey, Nobuaki Takemori","doi":"10.1038/s41596-024-01100-0","DOIUrl":"https://doi.org/10.1038/s41596-024-01100-0","url":null,"abstract":"<p><p>Top-down analysis of intact proteins and middle-down analysis of proteins subjected to limited digestion require efficient detection of traces of proteoforms in samples, necessitating the reduction of sample complexity by thorough pre-fractionation of the proteome components in the sample. SDS-PAGE is a simple and inexpensive high-resolution protein-separation technique widely used in biochemical and molecular biology experiments. Although its effectiveness for sample preparation in bottom-up proteomics has been proven, establishing a method for highly efficient recovery of intact proteins from the gel matrix has long been a challenge for its implementation in top-down and middle-down proteomics. As a much-awaited solution to this problem, we present an experimental protocol for efficient proteoform fractionation from complex biological samples using passively eluting proteins from polyacrylamide gels as intact species for mass spectrometry (PEPPI-MS), a rapid method for extraction of intact proteins separated by SDS-PAGE. PEPPI-MS allows recovery of proteins below 100 kDa separated by SDS-PAGE in solution with a median efficiency of 68% within 10 min and, unlike conventional electroelution methods, requires no special equipment, contributing to a remarkably economical implementation. The entire protocol from electrophoresis to protein purification can be performed in <5 h. By combining the resulting PEPPI fraction with other protein-separation techniques, such as reversed-phase liquid chromatography and ion mobility techniques, multidimensional proteome separations for in-depth proteoform analysis can be easily achieved.</p>","PeriodicalId":18901,"journal":{"name":"Nature Protocols","volume":" ","pages":""},"PeriodicalIF":13.1,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143008633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fabrication of high-performance tin halide perovskite thin-film transistors via chemical solution-based composition engineering. 基于化学溶液的成分工程制备高性能卤化锡钙钛矿薄膜晶体管。
IF 13.1 1区 生物学
Nature Protocols Pub Date : 2025-01-15 DOI: 10.1038/s41596-024-01101-z
Huihui Zhu, Youjin Reo, Geonwoong Park, Wonryeol Yang, Ao Liu, Yong-Young Noh
{"title":"Fabrication of high-performance tin halide perovskite thin-film transistors via chemical solution-based composition engineering.","authors":"Huihui Zhu, Youjin Reo, Geonwoong Park, Wonryeol Yang, Ao Liu, Yong-Young Noh","doi":"10.1038/s41596-024-01101-z","DOIUrl":"https://doi.org/10.1038/s41596-024-01101-z","url":null,"abstract":"<p><p>Metal halide perovskite semiconductors have attracted considerable attention because they enable the development of devices with exceptional optoelectronic and electronic properties via cost-effective and high-throughput chemical solution processes. However, challenges persist in the solution processing of perovskite films, including limited control over crystallization and the formation of defective deposits, leading to suboptimal device performance and reproducibility. Tin (Sn<sup>2+</sup>) halide perovskite holds promise for achieving high-performance thin-film transistors (TFTs) due to its intrinsic high hole mobility. Nevertheless, reliable production of high-quality Sn<sup>2+</sup> perovskite films remains challenging due to the rapid crystallization compared with more extensively studied lead (Pb)-based materials. Recently, composition engineering has emerged as a mature and effective strategy for realizing the high-yield fabrication of Sn<sup>2+</sup> halide perovskite thin films. This approach cannot only achieve improved TFT performance with high hole mobilities and current ratios<sup>1-6</sup>, but also enable reliable device operation with hysteresis-free character and long-term stability<sup>7-12</sup>. Here we provide the experimental procedure for precursor preparation, film and device fabrication and characterization. The entire process typically takes 20-24 h. This protocol requires a basic understanding of metal halide perovskites, perovskite film coating process, standard TFT fabrication and measurement techniques.</p>","PeriodicalId":18901,"journal":{"name":"Nature Protocols","volume":" ","pages":""},"PeriodicalIF":13.1,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143008631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信