Labeling, isolation and characterization of cell-type-specific exosomes derived from mouse skin tissue.

IF 16 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Anita Yadav, Anu Sharma, Mohini Moulick, Parmeshwar V Gavande, Aparajita Nandy, Yi Xuan, Chandan K Sen, Subhadip Ghatak
{"title":"Labeling, isolation and characterization of cell-type-specific exosomes derived from mouse skin tissue.","authors":"Anita Yadav, Anu Sharma, Mohini Moulick, Parmeshwar V Gavande, Aparajita Nandy, Yi Xuan, Chandan K Sen, Subhadip Ghatak","doi":"10.1038/s41596-025-01238-5","DOIUrl":null,"url":null,"abstract":"<p><p>Extracellular vesicles are a heterogeneous group of membrane-bound vesicles involved in cell-cell communication, formed at the plasma membrane (ectosomes) or by endocytosis (exosomes). Most exosome studies so far have focused on in vitro systems or exosomes derived from bodily fluids, while tissue-derived exosomes remain underexplored. Here we present a protocol using cell-type-specific promoter-driven reporter constructs for the targeted labeling and subsequent isolation of exosomes from specific cell types in vivo from mouse tissues. The differentiation between exosomes and ectosomes remains challenging due to limitations of current isolation techniques that are primarily based on size, density or surface markers. To address this issue, our approach leverages genetic engineering to mark exosomes specifically, enabling their precise identification and isolation from a complex biological pool of heterogenous extracellular vesicles. The isolated cell-type-specific exosomes are characterized by electron microscopy, nanoparticle tracking analysis, antibody exosome array assay and other established techniques. The labeling and isolation of exosomes spans 2-3 days and is designed to be accessible to researchers with fundamental laboratory competencies. This protocol facilitates the study of exosome-mediated cellular communication by enabling the isolation of cell-type-specific exosomes from either individual cell types or multiple cell types in combination. Most experiments within the protocol have used murine wound-edge skin tissue, but the protocol can, in principle, also be applied to other tissues to isolate exosomes, with a few modifications as required. This methodology opens new avenues for exploring the functional roles of cell-type-specific exosomes in intercellular communication.</p>","PeriodicalId":18901,"journal":{"name":"Nature Protocols","volume":" ","pages":""},"PeriodicalIF":16.0000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12505222/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Protocols","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41596-025-01238-5","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Extracellular vesicles are a heterogeneous group of membrane-bound vesicles involved in cell-cell communication, formed at the plasma membrane (ectosomes) or by endocytosis (exosomes). Most exosome studies so far have focused on in vitro systems or exosomes derived from bodily fluids, while tissue-derived exosomes remain underexplored. Here we present a protocol using cell-type-specific promoter-driven reporter constructs for the targeted labeling and subsequent isolation of exosomes from specific cell types in vivo from mouse tissues. The differentiation between exosomes and ectosomes remains challenging due to limitations of current isolation techniques that are primarily based on size, density or surface markers. To address this issue, our approach leverages genetic engineering to mark exosomes specifically, enabling their precise identification and isolation from a complex biological pool of heterogenous extracellular vesicles. The isolated cell-type-specific exosomes are characterized by electron microscopy, nanoparticle tracking analysis, antibody exosome array assay and other established techniques. The labeling and isolation of exosomes spans 2-3 days and is designed to be accessible to researchers with fundamental laboratory competencies. This protocol facilitates the study of exosome-mediated cellular communication by enabling the isolation of cell-type-specific exosomes from either individual cell types or multiple cell types in combination. Most experiments within the protocol have used murine wound-edge skin tissue, but the protocol can, in principle, also be applied to other tissues to isolate exosomes, with a few modifications as required. This methodology opens new avenues for exploring the functional roles of cell-type-specific exosomes in intercellular communication.

小鼠皮肤组织中细胞类型特异性外泌体的标记、分离和表征。
细胞外囊泡是一组异质性的膜结合囊泡,参与细胞间的交流,形成于质膜(外泌体)或内吞作用(外泌体)。迄今为止,大多数外泌体研究都集中在体外系统或来自体液的外泌体上,而组织外泌体的研究仍然不足。在这里,我们提出了一种使用细胞类型特异性启动子驱动的报告构建的方案,用于靶向标记和随后从小鼠组织体内特定细胞类型中分离外泌体。由于目前主要基于大小、密度或表面标记的分离技术的局限性,外泌体和外泌体之间的区分仍然具有挑战性。为了解决这个问题,我们的方法利用基因工程特异性标记外泌体,使它们能够从复杂的异质细胞外囊泡生物池中精确识别和分离。分离的细胞类型特异性外泌体通过电子显微镜、纳米颗粒跟踪分析、抗体外泌体阵列分析和其他已建立的技术进行表征。外泌体的标记和分离持续2-3天,旨在为具有基本实验室能力的研究人员提供便利。该方案通过从单个细胞类型或组合的多种细胞类型中分离细胞类型特异性外泌体,促进了外泌体介导的细胞通信的研究。该方案中的大多数实验都使用了小鼠伤口边缘的皮肤组织,但原则上,该方案也可以应用于其他组织来分离外泌体,只需根据需要进行一些修改。这种方法为探索细胞类型特异性外泌体在细胞间通讯中的功能作用开辟了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Protocols
Nature Protocols 生物-生化研究方法
CiteScore
29.10
自引率
0.70%
发文量
128
审稿时长
4 months
期刊介绍: Nature Protocols focuses on publishing protocols used to address significant biological and biomedical science research questions, including methods grounded in physics and chemistry with practical applications to biological problems. The journal caters to a primary audience of research scientists and, as such, exclusively publishes protocols with research applications. Protocols primarily aimed at influencing patient management and treatment decisions are not featured. The specific techniques covered encompass a wide range, including but not limited to: Biochemistry, Cell biology, Cell culture, Chemical modification, Computational biology, Developmental biology, Epigenomics, Genetic analysis, Genetic modification, Genomics, Imaging, Immunology, Isolation, purification, and separation, Lipidomics, Metabolomics, Microbiology, Model organisms, Nanotechnology, Neuroscience, Nucleic-acid-based molecular biology, Pharmacology, Plant biology, Protein analysis, Proteomics, Spectroscopy, Structural biology, Synthetic chemistry, Tissue culture, Toxicology, and Virology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信