{"title":"Assessment of the applicability of DFT methods to [Cp*Rh]-catalyzed hydrogen evolution processes","authors":"Aleksandr A. Chamkin, Elena S. Chamkina","doi":"10.1002/jcc.27468","DOIUrl":"10.1002/jcc.27468","url":null,"abstract":"<p>The present computational study provides a benchmark of density functional theory (DFT) methods in describing hydrogen evolution processes catalyzed by [Cp*Rh]-containing organometallic complexes. A test set was composed of 26 elementary reactions featuring chemical transformations and bonding situations essential for the field, including the emerging concept of non-innocent Cp* behavior. Reference values were obtained from a highly accurate 3/4 complete basis set and 6/7 complete PNO space extrapolated DLPNO-CCSD(T) energies. The performance of lower-level extrapolation procedures was also assessed. We considered 84 density functionals (DF) (including 13 generalized gradient approximations (GGA), nine meta-GGAs, 33 hybrids, and 29 double-hybrids) and three composite methods (HF-3c, PBEh-3c, and r<sup>2</sup>SCAN-3c), combined with different types of dispersion corrections (D3(0), D3BJ, D4, and VV10). The most accurate approach is the PBE0-DH-D3BJ (MAD of 1.36 kcal mol<sup>−1</sup>) followed by TPSS0-D3BJ (MAD of 1.60 kcal mol<sup>−1</sup>). Low-cost r<sup>2</sup>SCAN-3c composite provides a less accurate but much faster alternative (MAD of 2.39 kcal mol<sup>−1</sup>). The widely used Minnesota-family M06-L, M06, and M06-2X DFs should be avoided (MADs of 3.70, 3.94, and 4.01 kcal mol<sup>−1</sup>, respectively).</p>","PeriodicalId":188,"journal":{"name":"Journal of Computational Chemistry","volume":"45 31","pages":"2624-2639"},"PeriodicalIF":3.4,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141754430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Unraveling the structure–property relationship of novel thiophene and furan-fused cyclopentadienyl chromophores for nonlinear optical applications","authors":"Hejing Sun","doi":"10.1002/jcc.27467","DOIUrl":"10.1002/jcc.27467","url":null,"abstract":"<p>Development of organic nonlinear optical materials has become progressively more important due to their emerging applications in new-generation photonic devices. A novel series of chromophores based on innovative thiophene and furan-fused cyclopentadienyl bridge with various powerful donor and acceptor moieties were designed and theoretically investigated for applications in nonlinear optics. To unravel the structure–property relationship between this new push-pull conjugated systems and their nonlinear optical property, multiple methods, including density of states analysis, coupled perturbed Kohn–Sham (CPKS) method, sum-over-states (SOS) model, the two-level model (TSM), hyperpolarizability density analysis, and the (hyper)polarizability contribution decomposition, were performed to comprehensively investigated the nonlinear optical and electronic properties of this new π-system. Due to excellent charge transfer ability of new bridge and distinctive structure of donor and acceptor, the designed chromophores exhibit deep HOMO levels, low excitation energy, high dipole moment difference and large hyperpolarizability, indicating the appealing air-stable property and remarkable electrooptic performance of them. Importantly, THQ-CS-A3 and PA-CS-A3 shows outstanding NLO response properties with <i>β</i><sub>tot</sub> value of 6953.9 × 10<sup>−30</sup> and 5066.0 × 10<sup>−30</sup> esu in AN, respectively. The influence of the push-pull strength, the heterocycle and the π-conjugation of new bridge on the nonlinear optical properties of this novel powerful systems are clarified. This new series of chromophores exhibit remarkable electro-optical Pockels and optical rectification effect. More interestingly, PA-CS-A3 and THQ-CS-A2 also show appealing SHG effect. This study will help people understand the nature of nonlinear optical properties of innovative heteroarene-fused based cyclopentadienyl chromophores and offer guidance for the rational design of chromophores with outstanding electrooptic (EO) performance in the future.</p>","PeriodicalId":188,"journal":{"name":"Journal of Computational Chemistry","volume":"45 31","pages":"2612-2623"},"PeriodicalIF":3.4,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141750662","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Theoretical study on the carbon nanomaterial-supported Pt complex electrocatalysts for efficient and selective chlorine evolution reaction","authors":"Jewel Hossen, Naoki Nakatani","doi":"10.1002/jcc.27466","DOIUrl":"10.1002/jcc.27466","url":null,"abstract":"<p>Chlorine is an important chemical which has long been produced in chlor-alkali process using dimensionally stable anodes (DSA). However, some serious drawbacks of DSA inspire the development of alternative anodes for chlorine evolution reaction (CER). In this study, we focused on the graphene- and carbon nanotube-supported platinum tetra-phenyl porphyrins as electrocatalysts for CER, which have been theoretically investigated based on density functional theory. Our results reveal that the supported substrates possess potential CER electrocatalytic activity with very low thermodynamic overpotentials (0.012–0.028 V) via Cl* pathway instead of ClO*. The electronic structures analyses showed that electron transfer from the support to the adsorbed chlorine via the Pt center leads to strong Pt–Cl interactions. Furthermore, the supported electrocatalysts exhibited excellent selectivity toward CER because of high overpotentials and reaction barriers of oxygen evolution process. Therefore, our results may pave the way for designing CER electrocatalyst utilizing emerging carbon nanomaterials.</p>","PeriodicalId":188,"journal":{"name":"Journal of Computational Chemistry","volume":"45 31","pages":"2602-2611"},"PeriodicalIF":3.4,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141625525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Electronic structure of the strongly correlated electron system plutonium hexaboride: A study from single-particle approximations and many-body calculations","authors":"Ru-song Li, Xin Qu, Jin-tao Wang, Fei Wang, Zheng Xie","doi":"10.1002/jcc.27457","DOIUrl":"10.1002/jcc.27457","url":null,"abstract":"<p>The electronic structure of the strongly correlated electron system plutonium hexaboride is studied by using single-particle approximations and a many-body approach. Imaginary components of impurity Green's functions show that 5<i>f</i><sub><i>j</i>=5/2</sub> and 5<i>f</i><sub><i>j</i>=7/2</sub> manifolds are in conducting and insulating regimes, respectively. Quasi-particle weights and their ratio suggest that the intermediate coupling mechanism is applicable for Pu 5<i>f</i> electrons, and PuB<sub>6</sub> might be in the orbital-selective localized state. The weighted summation of occupation probabilities yields the interconfiguration fluctuation and average occupation number of 5<i>f</i> electrons <i>n</i><sub>5<i>f</i></sub> ~ 5.101. The interplay of 5<i>f</i>–5<i>f</i> correlation, spin-orbit coupling, Hund's exchange interaction, many-body transition of 5<i>f</i> configurations, and final state effects might be responsible for the quasiparticle multiplets in electronic spectrum functions. Prominent characters in the density of state, such as the coexistence of atomic multiplet peaks in the vicinity of the Fermi level and broad Hubbard bands in the high-lying regime, suggest that PuB<sub>6</sub> could be identified as a Racah material. Finally, the quasiparticle band structure is also presented.</p>","PeriodicalId":188,"journal":{"name":"Journal of Computational Chemistry","volume":"45 30","pages":"2587-2596"},"PeriodicalIF":3.4,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141618796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tesfaye Abebe Geleta, Debidatta Behera, Nabil Bouri, Victor José Ramirez Rivera, Fredy Mamani Gonzalo
{"title":"First principles insight into the study of the structural, stability, and optoelectronic properties of alkali-based single halide perovskite ZSnCl3 (Z = Na/K) materials for photovoltaic applications","authors":"Tesfaye Abebe Geleta, Debidatta Behera, Nabil Bouri, Victor José Ramirez Rivera, Fredy Mamani Gonzalo","doi":"10.1002/jcc.27465","DOIUrl":"10.1002/jcc.27465","url":null,"abstract":"<p>Metal halide perovskites are crystalline materials with a sharp increase in popularity and rapidly becoming a major contender for optoelectronic device applications. In this work, we provide the optoelectronic features of a possible novel candidate, ZSnCl<sub>3</sub> (Z = Na/K) Sn-based on a detailed numerical simulation. The output of the current computations is compared to the results that are currently available, and a respectable agreement is noted. The studied compounds were cubic in nature and structurally stabe. The mechanical properties reflect the mechanical stability and ductility of the proposed materials. The Sn-based single perovskite compounds proposed in this study are mechanically stable and ductile. The narrow direct band gap for NaSnCl<sub>3</sub> and KSnCl<sub>3</sub> are 1.36 eV and 1.47 eV, respectively, using the HSE06 hybrid function with the Boltztrp2 integrated in Quantum ESPRESSO (QE) software. The effective use of these compounds in perovskite solar cells and other optoelectronic applications was confirmed by optical absorption spectral measurements conducted in the photon energy range of 0–20 eV.</p>","PeriodicalId":188,"journal":{"name":"Journal of Computational Chemistry","volume":"45 30","pages":"2574-2586"},"PeriodicalIF":3.4,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141615420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dunia Alatoom, Mohammad Taha I. Ibrahim, Tibor Furtenbacher, Attila G. Császár, M. Alghizzawi, Sergei N. Yurchenko, Ala'a A. A. Azzam, Jonathan Tennyson
{"title":"MARVEL analysis of high-resolution rovibrational spectra of 16O12C18O","authors":"Dunia Alatoom, Mohammad Taha I. Ibrahim, Tibor Furtenbacher, Attila G. Császár, M. Alghizzawi, Sergei N. Yurchenko, Ala'a A. A. Azzam, Jonathan Tennyson","doi":"10.1002/jcc.27453","DOIUrl":"10.1002/jcc.27453","url":null,"abstract":"<p>Empirical rovibrational energy levels are presented for the third most abundant, asymmetric carbon dioxide isotopologue, <sup>16</sup>O<sup>12</sup>C<sup>18</sup>O, based on a compiled dataset of experimental rovibrational transitions collected from the literature. The 52 literature sources utilized provide 19,438 measured lines with unique assignments in the wavenumber range of 2–12,676 cm<sup>−1</sup>. The MARVEL (Measured Active Rotational-Vibrational Energy Levels) protocol, which is built upon the theory of spectroscopic networks, validates the great majority of these transitions and outputs 8786 empirical rovibrational energy levels with an uncertainty estimation based on the experimental uncertainties of the transitions. Issues found in the literature data, such as misassignment of quantum numbers, typographical errors, and misidentifications, are fixed before including them in the final MARVEL dataset and analysis. Comparison of the empirical energy-level data of this study with those in the line lists CDSD-2019 and Ames-2021 shows good overall agreement, significantly better for CDSD-2019; some issues raised by these comparisons are discussed.</p>","PeriodicalId":188,"journal":{"name":"Journal of Computational Chemistry","volume":"45 30","pages":"2558-2573"},"PeriodicalIF":3.4,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcc.27453","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141597979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An improved DIIS method using a versatile residual matrix to accelerate SCF starting from a crude guess","authors":"Linping Hu, Yanoar Pribadi Sarwono, Yonglong Ding, Fang He, Rui-Qin Zhang","doi":"10.1002/jcc.27463","DOIUrl":"10.1002/jcc.27463","url":null,"abstract":"<p>The minimization of the commutator of the Fock and density matrices as the error matrix in the direct inversion of the iterative subspace (CDIIS) developed by Pulay is a powerful self-consistent field (SCF) acceleration technique for the construction of optimum Fock matrix, if initiated with a fair initial guess. In this work, we present an alternative minimized error matrix to the commutator in the CDIIS, namely the residual or the gradient of the energy-functional for a Slater determinant subject to the orthonormality constraints among orbitals, representing the search for a newly improved Fock matrix in the direction of the residual in the direct inversion of the iterative subspace (RDIIS). Implemented in the computational chemistry package GAMESS, the RDIIS is compared with the standard CDIIS and the second order SCF orbital optimization (SOSCF) for tested molecules started with a crude guess. As a result, the RDIIS stably and efficiently performs the SCF convergence acceleration. Furthermore, the RDIIS is considerably independent on the subspace size with the concentrated linear coefficients accounting proportionally for the Fock matrices close to the current iteration.</p>","PeriodicalId":188,"journal":{"name":"Journal of Computational Chemistry","volume":"45 30","pages":"2539-2546"},"PeriodicalIF":3.4,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141557652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Ab initio exploration of low-lying electronic states of linear and bent MNX+ (M = Ca, Sr, Ba, Ra; X = O, S, Se, Te, Po) and their origins","authors":"Isuru R. Ariyarathna","doi":"10.1002/jcc.27456","DOIUrl":"10.1002/jcc.27456","url":null,"abstract":"<p>High-level multireference and coupled cluster quantum calculations were employed to analyze low-lying electronic states of linear-MNX<sup>+</sup> and side-bonded-M[NX]<sup>+</sup> (M = Ca, Sr, Ba, Ra; X = O, S, Se, Te, Po) species. Their full potential energy curves (PECs), dissociation energies (<i>D<sub>e</sub></i>s), geometric parameters, excitation energies (<i>T</i><sub><i>e</i></sub>s), and harmonic vibrational frequencies (<i>ω</i><sub><i>e</i></sub>s) are reported. The first three chemically bound electronic states of MNX<sup>+</sup> and M[NX]<sup>+</sup> are <sup>3</sup>∑<sup>−</sup>, <sup>1</sup>Δ, <sup>1</sup>∑<sup>+</sup> and <sup>3</sup>A″, <sup>1</sup>A′, <sup>1</sup>A″, respectively. The <sup>3</sup>∑<sup>−</sup>, <sup>1</sup>Δ, <sup>1</sup>∑<sup>+</sup> of MNX<sup>+</sup> originate from the M<sup>+</sup>(<sup>2</sup>D) + NX(<sup>2</sup>Π) fragments, whereas the <sup>3</sup>A″, <sup>1</sup>A′, <sup>1</sup>A″ states of M[NX]<sup>+</sup> dissociate to M<sup>+</sup>(<sup>2</sup>S) + NX(<sup>2</sup>Π) as a result of avoided crossings. The MNX<sup>+</sup> and M[NX]<sup>+</sup> are real minima on the potential energy surface and their interconversions are possible. The M<sup>2+</sup>NX<sup>−</sup>/M<sup>2+</sup>[NX]<sup>−</sup> ionic structure is an accurate representation for their low-lying electronic states. The <i>D</i><sub>e</sub>s of MNX<sup>+</sup> species were found to depend on the dipole moment (<i>μ</i>) of the corresponding NX ligands and a linear relationship between these two parameters was observed.</p>","PeriodicalId":188,"journal":{"name":"Journal of Computational Chemistry","volume":"45 30","pages":"2530-2538"},"PeriodicalIF":3.4,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcc.27456","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141562178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Éric Brémond, Ilaria Ciofini, Frédéric Labat, Vincent Tognetti
{"title":"Preface of Carlo Adamo's virtual special issue","authors":"Éric Brémond, Ilaria Ciofini, Frédéric Labat, Vincent Tognetti","doi":"10.1002/jcc.27462","DOIUrl":"10.1002/jcc.27462","url":null,"abstract":"","PeriodicalId":188,"journal":{"name":"Journal of Computational Chemistry","volume":"45 25","pages":"2110-2111"},"PeriodicalIF":3.4,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141557653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}