A Highly Correlated, Multireference Study of the Lowest Lying Singlet and Triplet States of the Four Thiophene Diradicals

IF 3.4 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Joshua Pandian, Khanh Vu, Jules Tshishimbi Muya, Anna Parker, Christine Mae F. Ancajas, Diomedes Saldana-Greco, Tabitha Yewer, Carol Parish
{"title":"A Highly Correlated, Multireference Study of the Lowest Lying Singlet and Triplet States of the Four Thiophene Diradicals","authors":"Joshua Pandian, Khanh Vu, Jules Tshishimbi Muya, Anna Parker, Christine Mae F. Ancajas, Diomedes Saldana-Greco, Tabitha Yewer, Carol Parish","doi":"10.1002/jcc.70044","DOIUrl":null,"url":null,"abstract":"The energies and geometries of the lowest lying singlet and triplet states of the four diradicals formed by removing two H atoms from thiophene have been characterized. We utilized the highly correlated, multireference methods configuration interaction with single and double excitations with and without the Pople correction for size-extensivity (MR-CISD+Q and MR-CISD) and averaged quadratic coupled cluster theory (MR-AQCC). CAS (8,7) and CAS (10,8) active spaces involving σ, σ*, π, and π* orbitals were employed along with the cc-pVDZ and cc-pVTZ basis sets. The larger active space included the two electrons in the nonbonding sp<sup>2</sup> hybrid orbital on sulfur. We find that all didehydro isomers exist as planar, stable ground state singlets. The singlet-triplet (S-T) adiabatic gaps range from 15 to 25 kcal/mol while the vertical splittings are 21–35 kcal/mol. The 2,3 isomer has the lowest absolute ground state singlet energy and the largest adiabatic and vertical S-T splitting. The ground states of the 2,3-, and 2,5-didehydrothiophene isomers are predicted to exhibit the smallest and largest diradical character, respectively, based on their electronic structures, spin densities and bonding analysis. To our knowledge, no experimental excitation energies of any of the didehydrothiophene isomers are available, and our computed MR-AQCC/cc-pVTZ data are believed to be among the most accurate computed results. This extensive study shows a competitive performance between MR-AQCC and MR-CISD+Q.","PeriodicalId":188,"journal":{"name":"Journal of Computational Chemistry","volume":"57 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/jcc.70044","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The energies and geometries of the lowest lying singlet and triplet states of the four diradicals formed by removing two H atoms from thiophene have been characterized. We utilized the highly correlated, multireference methods configuration interaction with single and double excitations with and without the Pople correction for size-extensivity (MR-CISD+Q and MR-CISD) and averaged quadratic coupled cluster theory (MR-AQCC). CAS (8,7) and CAS (10,8) active spaces involving σ, σ*, π, and π* orbitals were employed along with the cc-pVDZ and cc-pVTZ basis sets. The larger active space included the two electrons in the nonbonding sp2 hybrid orbital on sulfur. We find that all didehydro isomers exist as planar, stable ground state singlets. The singlet-triplet (S-T) adiabatic gaps range from 15 to 25 kcal/mol while the vertical splittings are 21–35 kcal/mol. The 2,3 isomer has the lowest absolute ground state singlet energy and the largest adiabatic and vertical S-T splitting. The ground states of the 2,3-, and 2,5-didehydrothiophene isomers are predicted to exhibit the smallest and largest diradical character, respectively, based on their electronic structures, spin densities and bonding analysis. To our knowledge, no experimental excitation energies of any of the didehydrothiophene isomers are available, and our computed MR-AQCC/cc-pVTZ data are believed to be among the most accurate computed results. This extensive study shows a competitive performance between MR-AQCC and MR-CISD+Q.

Abstract Image

四种噻吩双自由基最低单重态和三重态高度相关的多参考文献研究
从噻吩中除去两个H原子形成的四个双自由基的最低单线态和三重态的能量和几何形状被表征。我们使用了高度相关的多参考方法,构型相互作用与单激发和双激发(MR-CISD+Q和MR-CISD)和平均二次耦合簇理论(MR-AQCC)的大小-广泛性进行了和不进行人们校正。利用涉及σ、σ*、π和π*轨道的CAS(8,7)和CAS(10,8)活性空间,以及cc-pVDZ和cc-pVTZ基集。较大的活性空间包括硫上非成键sp2杂化轨道上的两个电子。我们发现所有的二脱氢异构体都以平面的、稳定的基态单重态存在。单重态-三重态绝热间隙为15 ~ 25 kcal/mol,垂直分裂为21 ~ 35 kcal/mol。2,3异构体具有最低的绝对基态单线态能量和最大的绝热和垂直S-T分裂。根据电子结构、自旋密度和成键分析,预测2,3-和2,5-二脱氢噻吩异构体的基态分别表现出最小和最大的二自由基特征。据我们所知,没有任何二脱氢噻吩异构体的实验激发能,我们计算的MR-AQCC/cc-pVTZ数据被认为是最准确的计算结果之一。这项广泛的研究表明MR-AQCC和MR-CISD+Q之间具有竞争性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.60
自引率
3.30%
发文量
247
审稿时长
1.7 months
期刊介绍: This distinguished journal publishes articles concerned with all aspects of computational chemistry: analytical, biological, inorganic, organic, physical, and materials. The Journal of Computational Chemistry presents original research, contemporary developments in theory and methodology, and state-of-the-art applications. Computational areas that are featured in the journal include ab initio and semiempirical quantum mechanics, density functional theory, molecular mechanics, molecular dynamics, statistical mechanics, cheminformatics, biomolecular structure prediction, molecular design, and bioinformatics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信