Some Challenges of Diffused Interfaces in Implicit-Solvent Models

IF 3.4 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Mauricio Guerrero-Montero, Michał Bosy, Christopher D. Cooper
{"title":"Some Challenges of Diffused Interfaces in Implicit-Solvent Models","authors":"Mauricio Guerrero-Montero, Michał Bosy, Christopher D. Cooper","doi":"10.1002/jcc.70036","DOIUrl":null,"url":null,"abstract":"The standard Poisson-Boltzmann (PB) model for molecular electrostatics assumes a sharp variation of the permittivity and salt concentration along the solute-solvent interface. The discontinuous field parameters are not only difficult numerically, but also are not a realistic physical picture, as it forces the dielectric constant and ionic strength of bulk in the near-solute region. An alternative to alleviate some of these issues is to represent the molecular surface as a diffuse interface, however, this also presents challenges. In this work we analyzed the impact of the shape of the interfacial variation of the field parameters in solvation and binding energy. However we used a hyperbolic tangent function <span data-altimg=\"/cms/asset/0c43901d-4a85-445f-99f3-79c33851a640/jcc70036-math-0001.png\"></span><mjx-container ctxtmenu_counter=\"7\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/jcc70036-math-0001.png\"><mjx-semantics><mjx-mrow><mjx-mrow data-semantic-children=\"11\" data-semantic-content=\"12,13\" data-semantic- data-semantic-role=\"leftright\" data-semantic-speech=\"left parenthesis hyperbolic tangent left parenthesis k Subscript p Baseline x right parenthesis right parenthesis\" data-semantic-type=\"fenced\"><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"14\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\"0,9\" data-semantic-content=\"10,0\" data-semantic- data-semantic-parent=\"14\" data-semantic-role=\"prefix function\" data-semantic-type=\"appl\"><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"11\" data-semantic-role=\"prefix function\" data-semantic-type=\"function\"><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"11\" data-semantic-role=\"application\" data-semantic-type=\"punctuation\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\"6\" data-semantic-content=\"7,8\" data-semantic- data-semantic-parent=\"11\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"9\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"3,4\" data-semantic-content=\"5\" data-semantic- data-semantic-parent=\"9\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\"><mjx-msub data-semantic-children=\"1,2\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"latinletter\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c></mjx-c></mjx-mi></mjx-script></mjx-msub><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"6\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-mrow><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"9\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo></mjx-mrow></mjx-mrow><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"14\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo></mjx-mrow></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:01928651:media:jcc70036:jcc70036-math-0001\" display=\"inline\" location=\"graphic/jcc70036-math-0001.png\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><mrow data-semantic-=\"\" data-semantic-children=\"11\" data-semantic-content=\"12,13\" data-semantic-role=\"leftright\" data-semantic-speech=\"left parenthesis hyperbolic tangent left parenthesis k Subscript p Baseline x right parenthesis right parenthesis\" data-semantic-type=\"fenced\"><mo data-semantic-=\"\" data-semantic-added=\"true\" data-semantic-operator=\"fenced\" data-semantic-parent=\"14\" data-semantic-role=\"open\" data-semantic-type=\"fence\">(</mo><mrow data-semantic-=\"\" data-semantic-children=\"0,9\" data-semantic-content=\"10,0\" data-semantic-parent=\"14\" data-semantic-role=\"prefix function\" data-semantic-type=\"appl\"><mi data-semantic-=\"\" data-semantic-font=\"normal\" data-semantic-operator=\"appl\" data-semantic-parent=\"11\" data-semantic-role=\"prefix function\" data-semantic-type=\"function\">tanh</mi><mo data-semantic-=\"\" data-semantic-added=\"true\" data-semantic-operator=\"appl\" data-semantic-parent=\"11\" data-semantic-role=\"application\" data-semantic-type=\"punctuation\">⁡</mo><mrow data-semantic-=\"\" data-semantic-children=\"6\" data-semantic-content=\"7,8\" data-semantic-parent=\"11\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mo data-semantic-=\"\" data-semantic-added=\"true\" data-semantic-operator=\"fenced\" data-semantic-parent=\"9\" data-semantic-role=\"open\" data-semantic-type=\"fence\">(</mo><mrow data-semantic-=\"\" data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"3,4\" data-semantic-content=\"5\" data-semantic-parent=\"9\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\"><msub data-semantic-=\"\" data-semantic-children=\"1,2\" data-semantic-parent=\"6\" data-semantic-role=\"latinletter\" data-semantic-type=\"subscript\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">k</mi><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">p</mi></msub><mo data-semantic-=\"\" data-semantic-added=\"true\" data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"6\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\">⁢</mo><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"6\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">x</mi></mrow><mo data-semantic-=\"\" data-semantic-added=\"true\" data-semantic-operator=\"fenced\" data-semantic-parent=\"9\" data-semantic-role=\"close\" data-semantic-type=\"fence\">)</mo></mrow></mrow><mo data-semantic-=\"\" data-semantic-added=\"true\" data-semantic-operator=\"fenced\" data-semantic-parent=\"14\" data-semantic-role=\"close\" data-semantic-type=\"fence\">)</mo></mrow></mrow>$$ \\left(\\tanh \\left({k}_px\\right)\\right) $$</annotation></semantics></math></mjx-assistive-mml></mjx-container> to couple the internal and external regions, our analysis is valid for other definitions. Our methodology, restricted to the linear PB, was based on a coupled finite element (FEM) and boundary element (BEM) scheme that allowed us to have a special treatment of the permittivity and ionic strength in a bounded FEM region near the interface, while maintaining BEM elsewhere. Our results suggest that the shape of the function (represented by <span data-altimg=\"/cms/asset/3104bba1-a69b-4271-9147-03b9f3a309fb/jcc70036-math-0002.png\"></span><mjx-container ctxtmenu_counter=\"8\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/jcc70036-math-0002.png\"><mjx-semantics><mjx-mrow><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"k Subscript p\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c></mjx-c></mjx-mi></mjx-script></mjx-msub></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:01928651:media:jcc70036:jcc70036-math-0002\" display=\"inline\" location=\"graphic/jcc70036-math-0002.png\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><msub data-semantic-=\"\" data-semantic-children=\"0,1\" data-semantic-role=\"latinletter\" data-semantic-speech=\"k Subscript p\" data-semantic-type=\"subscript\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">k</mi><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">p</mi></msub></mrow>$$ {k}_p $$</annotation></semantics></math></mjx-assistive-mml></mjx-container>) has a large impact on solvation and binding energy. We saw that high values of <span data-altimg=\"/cms/asset/bc51a571-7674-4d5b-a031-17cc9ae30333/jcc70036-math-0003.png\"></span><mjx-container ctxtmenu_counter=\"9\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/jcc70036-math-0003.png\"><mjx-semantics><mjx-mrow><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"k Subscript p\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c></mjx-c></mjx-mi></mjx-script></mjx-msub></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:01928651:media:jcc70036:jcc70036-math-0003\" display=\"inline\" location=\"graphic/jcc70036-math-0003.png\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><msub data-semantic-=\"\" data-semantic-children=\"0,1\" data-semantic-role=\"latinletter\" data-semantic-speech=\"k Subscript p\" data-semantic-type=\"subscript\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">k</mi><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">p</mi></msub></mrow>$$ {k}_p $$</annotation></semantics></math></mjx-assistive-mml></mjx-container> induce a high gradient on the interface, to the limit of recovering the sharp jump when <span data-altimg=\"/cms/asset/b6b04782-71a7-4bae-8673-da5b68e2daf9/jcc70036-math-0004.png\"></span><mjx-container ctxtmenu_counter=\"10\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/jcc70036-math-0004.png\"><mjx-semantics><mjx-mrow data-semantic-children=\"2,4\" data-semantic-content=\"3\" data-semantic- data-semantic-role=\"arrow\" data-semantic-speech=\"k Subscript p Baseline right arrow infinity\" data-semantic-type=\"relseq\"><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"latinletter\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c></mjx-c></mjx-mi></mjx-script></mjx-msub><mjx-mo data-semantic- data-semantic-operator=\"relseq,→\" data-semantic-parent=\"5\" data-semantic-role=\"arrow\" data-semantic-type=\"relation\" rspace=\"5\" space=\"5\"><mjx-c></mjx-c></mjx-mo><mjx-mo data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"unknown\" data-semantic-type=\"operator\" style=\"margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:01928651:media:jcc70036:jcc70036-math-0004\" display=\"inline\" location=\"graphic/jcc70036-math-0004.png\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-children=\"2,4\" data-semantic-content=\"3\" data-semantic-role=\"arrow\" data-semantic-speech=\"k Subscript p Baseline right arrow infinity\" data-semantic-type=\"relseq\"><msub data-semantic-=\"\" data-semantic-children=\"0,1\" data-semantic-parent=\"5\" data-semantic-role=\"latinletter\" data-semantic-type=\"subscript\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">k</mi><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">p</mi></msub><mo data-semantic-=\"\" data-semantic-operator=\"relseq,→\" data-semantic-parent=\"5\" data-semantic-role=\"arrow\" data-semantic-type=\"relation\">→</mo><mo data-semantic-=\"\" data-semantic-parent=\"5\" data-semantic-role=\"unknown\" data-semantic-type=\"operator\">∞</mo></mrow>$$ {k}_p\\to \\infty $$</annotation></semantics></math></mjx-assistive-mml></mjx-container>, presenting a numerical challenge where careful meshing is key. Using the FreeSolv database to compare with molecular dynamics, our calculations indicate that an optimal value of <span data-altimg=\"/cms/asset/f0f84343-0ee4-414a-aca3-e3a8fcb8e0cf/jcc70036-math-0005.png\"></span><mjx-container ctxtmenu_counter=\"11\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/jcc70036-math-0005.png\"><mjx-semantics><mjx-mrow><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"k Subscript p\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c></mjx-c></mjx-mi></mjx-script></mjx-msub></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:01928651:media:jcc70036:jcc70036-math-0005\" display=\"inline\" location=\"graphic/jcc70036-math-0005.png\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><msub data-semantic-=\"\" data-semantic-children=\"0,1\" data-semantic-role=\"latinletter\" data-semantic-speech=\"k Subscript p\" data-semantic-type=\"subscript\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">k</mi><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">p</mi></msub></mrow>$$ {k}_p $$</annotation></semantics></math></mjx-assistive-mml></mjx-container> for solvation energies was around 3. However, more challenging binding free energy tests make this conclusion more difficult, as binding showed to be very sensitive to small variations of <span data-altimg=\"/cms/asset/e913b63b-b869-49bd-9b59-0566b0d9d0e2/jcc70036-math-0006.png\"></span><mjx-container ctxtmenu_counter=\"12\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/jcc70036-math-0006.png\"><mjx-semantics><mjx-mrow><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"k Subscript p\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c></mjx-c></mjx-mi></mjx-script></mjx-msub></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:01928651:media:jcc70036:jcc70036-math-0006\" display=\"inline\" location=\"graphic/jcc70036-math-0006.png\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><msub data-semantic-=\"\" data-semantic-children=\"0,1\" data-semantic-role=\"latinletter\" data-semantic-speech=\"k Subscript p\" data-semantic-type=\"subscript\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">k</mi><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">p</mi></msub></mrow>$$ {k}_p $$</annotation></semantics></math></mjx-assistive-mml></mjx-container>. In that case, optimal values of <span data-altimg=\"/cms/asset/e226ef21-875a-4fc6-b420-c19c1863f1ce/jcc70036-math-0007.png\"></span><mjx-container ctxtmenu_counter=\"13\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/jcc70036-math-0007.png\"><mjx-semantics><mjx-mrow><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"k Subscript p\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c></mjx-c></mjx-mi></mjx-script></mjx-msub></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:01928651:media:jcc70036:jcc70036-math-0007\" display=\"inline\" location=\"graphic/jcc70036-math-0007.png\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><msub data-semantic-=\"\" data-semantic-children=\"0,1\" data-semantic-role=\"latinletter\" data-semantic-speech=\"k Subscript p\" data-semantic-type=\"subscript\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">k</mi><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">p</mi></msub></mrow>$$ {k}_p $$</annotation></semantics></math></mjx-assistive-mml></mjx-container> ranged from 2 to 20.","PeriodicalId":188,"journal":{"name":"Journal of Computational Chemistry","volume":"38 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/jcc.70036","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The standard Poisson-Boltzmann (PB) model for molecular electrostatics assumes a sharp variation of the permittivity and salt concentration along the solute-solvent interface. The discontinuous field parameters are not only difficult numerically, but also are not a realistic physical picture, as it forces the dielectric constant and ionic strength of bulk in the near-solute region. An alternative to alleviate some of these issues is to represent the molecular surface as a diffuse interface, however, this also presents challenges. In this work we analyzed the impact of the shape of the interfacial variation of the field parameters in solvation and binding energy. However we used a hyperbolic tangent function (tanh(kpx))$$ \left(\tanh \left({k}_px\right)\right) $$ to couple the internal and external regions, our analysis is valid for other definitions. Our methodology, restricted to the linear PB, was based on a coupled finite element (FEM) and boundary element (BEM) scheme that allowed us to have a special treatment of the permittivity and ionic strength in a bounded FEM region near the interface, while maintaining BEM elsewhere. Our results suggest that the shape of the function (represented by kp$$ {k}_p $$) has a large impact on solvation and binding energy. We saw that high values of kp$$ {k}_p $$ induce a high gradient on the interface, to the limit of recovering the sharp jump when kp$$ {k}_p\to \infty $$, presenting a numerical challenge where careful meshing is key. Using the FreeSolv database to compare with molecular dynamics, our calculations indicate that an optimal value of kp$$ {k}_p $$ for solvation energies was around 3. However, more challenging binding free energy tests make this conclusion more difficult, as binding showed to be very sensitive to small variations of kp$$ {k}_p $$. In that case, optimal values of kp$$ {k}_p $$ ranged from 2 to 20.

Abstract Image

隐式溶剂模型中扩散界面的一些挑战
分子静电学的标准泊松-玻尔兹曼(PB)模型假定介电常数和盐浓度沿溶质-溶剂界面急剧变化。不连续的场参数不仅在数值上有困难,而且也不是真实的物理图像,因为它迫使体在近溶质区域的介电常数和离子强度。缓解这些问题的另一种方法是将分子表面表示为扩散界面,然而,这也带来了挑战。本文分析了界面形状变化对溶剂化和结合能场参数的影响。然而,我们使用双曲正切函数(tanh∑(kp∑x)) $$ \left(\tanh \left({k}_px\right)\right) $$耦合内部和外部区域,我们的分析对其他定义是有效的。我们的方法仅限于线性PB,基于耦合有限元(FEM)和边界元(BEM)方案,该方案允许我们在靠近界面的有限有限元区域内对介电常数和离子强度进行特殊处理,同时在其他地方保持BEM。我们的结果表明,函数的形状(用kp $$ {k}_p $$表示)对溶剂化和结合能有很大的影响。我们看到kp $$ {k}_p $$的高值在界面上诱导了一个高梯度,达到了当kp→∞$$ {k}_p\to \infty $$时恢复急剧跳跃的极限,提出了一个数值挑战,其中仔细的网格划分是关键。使用FreeSolv数据库与分子动力学进行比较,我们的计算表明,溶剂化能kp $$ {k}_p $$的最佳值约为3。然而,更具挑战性的结合自由能测试使这一结论更加困难,因为结合对kp $$ {k}_p $$的微小变化非常敏感。在这种情况下,kp $$ {k}_p $$的最佳值范围为2到20。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.60
自引率
3.30%
发文量
247
审稿时长
1.7 months
期刊介绍: This distinguished journal publishes articles concerned with all aspects of computational chemistry: analytical, biological, inorganic, organic, physical, and materials. The Journal of Computational Chemistry presents original research, contemporary developments in theory and methodology, and state-of-the-art applications. Computational areas that are featured in the journal include ab initio and semiempirical quantum mechanics, density functional theory, molecular mechanics, molecular dynamics, statistical mechanics, cheminformatics, biomolecular structure prediction, molecular design, and bioinformatics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信