Nature reviews. Chemistry最新文献

筛选
英文 中文
Coupling experiment and theory to push the state-of-the-art in X-ray spectroscopy 结合实验与理论推动x射线光谱学的发展
IF 36.3 1区 化学
Nature reviews. Chemistry Pub Date : 2025-05-30 DOI: 10.1038/s41570-025-00718-2
Zachary Mathe, Dimitrios Maganas, Frank Neese, Serena DeBeer
{"title":"Coupling experiment and theory to push the state-of-the-art in X-ray spectroscopy","authors":"Zachary Mathe, Dimitrios Maganas, Frank Neese, Serena DeBeer","doi":"10.1038/s41570-025-00718-2","DOIUrl":"https://doi.org/10.1038/s41570-025-00718-2","url":null,"abstract":"<p>X-ray spectroscopy plays a pivotal role in understanding the geometric and electronic structures of countless molecules and materials, from homogeneous and heterogeneous catalysts to biological active sites. The element-selectivity of X-ray spectroscopy allows for phenomena at specific photoabsorbers to be investigated. Since the early 2000s, experimental sophistication has progressed, with increasing applications of X-ray emission spectroscopy and two-dimensional photon-in-photon-out spectroscopies, such as resonant inelastic X-ray scattering. Although advanced X-ray spectroscopic methods increase selectivity and information content, the spectra obtained present major challenges for both qualitative and quantitative interpretation. To maximize the insight gained from X-ray spectroscopy, close coupling of experiment and theory is essential. Herein, we present the theoretical and experimental aspects of X-ray spectroscopy, with an emphasis on molecular systems and how an integrated approach with a solid foundation in molecular electronic structure theory enables new modes of inquiry into (bio)chemical catalysis.</p><figure></figure>","PeriodicalId":18849,"journal":{"name":"Nature reviews. Chemistry","volume":"6 1","pages":""},"PeriodicalIF":36.3,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144177284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Decoupling sequence and structure 解耦序列与结构
IF 36.3 1区 化学
Nature reviews. Chemistry Pub Date : 2025-05-29 DOI: 10.1038/s41570-025-00726-2
Chuanliu Wu
{"title":"Decoupling sequence and structure","authors":"Chuanliu Wu","doi":"10.1038/s41570-025-00726-2","DOIUrl":"https://doi.org/10.1038/s41570-025-00726-2","url":null,"abstract":"In 1961, it was demonstrated that the enzyme ribonuclease can correctly fold upon oxidation in air from a fully reduced and denatured polypeptide chain. Since then, the principles that govern the oxidative folding of polypeptide chains have been elucidated, and our ability to control this process has advanced significantly.","PeriodicalId":18849,"journal":{"name":"Nature reviews. Chemistry","volume":"43 1","pages":""},"PeriodicalIF":36.3,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144165177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular synthesis with gaseous fragment ions on surfaces 表面有气体碎片离子的分子合成
IF 36.3 1区 化学
Nature reviews. Chemistry Pub Date : 2025-05-29 DOI: 10.1038/s41570-025-00719-1
Jonas Warneke, Hugo Y. Samayoa-Oviedo, Markus Rohdenburg, Xilai Li, Harald Knorke, Julia Laskin
{"title":"Molecular synthesis with gaseous fragment ions on surfaces","authors":"Jonas Warneke, Hugo Y. Samayoa-Oviedo, Markus Rohdenburg, Xilai Li, Harald Knorke, Julia Laskin","doi":"10.1038/s41570-025-00719-1","DOIUrl":"https://doi.org/10.1038/s41570-025-00719-1","url":null,"abstract":"<p>Chemists often treat gaseous fragment ions as esoteric chemical species of interest to only analytical mass spectrometry and gas-phase ion chemistry. However, their potential as building blocks for designing new compounds in the condensed phase is largely unexplored. Developments in preparative mass spectrometry instrumentation have opened up a new research field focused on understanding the chemistry of well-defined gaseous fragment ions on surfaces. In this Review, we highlight the preparative potential of gaseous fragment ions for synthesizing new compounds in the condensed phase. We discuss factors affecting the selectivity of the observed reactivity of fragment ions, examine the effect of charge on reaction mechanisms, and introduce the unexpected reactivity of ions of the same polarity on surfaces in the absence of solvent molecules. These developments hold the potential to transform preparative mass spectrometry into a valuable method for small-scale chemical synthesis in almost all fields of molecular sciences.</p><figure></figure>","PeriodicalId":18849,"journal":{"name":"Nature reviews. Chemistry","volume":"242 1","pages":""},"PeriodicalIF":36.3,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144165178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The story of a structural sage 一个建筑圣人的故事
IF 36.3 1区 化学
Nature reviews. Chemistry Pub Date : 2025-05-29 DOI: 10.1038/s41570-025-00731-5
Brian Kobilka, Stephanie Greed
{"title":"The story of a structural sage","authors":"Brian Kobilka, Stephanie Greed","doi":"10.1038/s41570-025-00731-5","DOIUrl":"https://doi.org/10.1038/s41570-025-00731-5","url":null,"abstract":"Ahead of his 70th birthday, Brian Kobilka, Professor of Molecular and Cellular Physiology at Stanford University, discusses his life from growing up as a baker’s son in a small town to receiving a call from Stockholm having been awarded the Nobel Prize in Chemistry, as well as his continuing work around G protein-coupled receptors (GPCRs).","PeriodicalId":18849,"journal":{"name":"Nature reviews. Chemistry","volume":"13 1","pages":""},"PeriodicalIF":36.3,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144165174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fear the worst, smell the best. 怕最坏,闻最好。
IF 38.1 1区 化学
Nature reviews. Chemistry Pub Date : 2025-05-19 DOI: 10.1038/s41570-025-00727-1
Stephanie Greed
{"title":"Fear the worst, smell the best.","authors":"Stephanie Greed","doi":"10.1038/s41570-025-00727-1","DOIUrl":"https://doi.org/10.1038/s41570-025-00727-1","url":null,"abstract":"","PeriodicalId":18849,"journal":{"name":"Nature reviews. Chemistry","volume":" ","pages":""},"PeriodicalIF":38.1,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144102196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rings make more room 戒指能腾出更多空间
IF 36.3 1区 化学
Nature reviews. Chemistry Pub Date : 2025-05-15 DOI: 10.1038/s41570-025-00723-5
Anna K. Patterson
{"title":"Rings make more room","authors":"Anna K. Patterson","doi":"10.1038/s41570-025-00723-5","DOIUrl":"https://doi.org/10.1038/s41570-025-00723-5","url":null,"abstract":"Ring-shaped colloidal particles can be used to form Pickering emulsions, just as solid particles, but their shape means that a larger portion of the emulsion interface remains open, which is critical for application performance.","PeriodicalId":18849,"journal":{"name":"Nature reviews. Chemistry","volume":"4 1","pages":""},"PeriodicalIF":36.3,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143979487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Element sets for schools 学校元素集
IF 36.3 1区 化学
Nature reviews. Chemistry Pub Date : 2025-05-14 DOI: 10.1038/s41570-025-00724-4
Stuart R. Batten
{"title":"Element sets for schools","authors":"Stuart R. Batten","doi":"10.1038/s41570-025-00724-4","DOIUrl":"https://doi.org/10.1038/s41570-025-00724-4","url":null,"abstract":"The Element Sets project created more than 1,600 sets of 37 pure elements that were sent free to schools all over Australia. This outreach project was able to target very remote and under-resourced schools, and support students and teachers indefinitely without requiring a continual pipeline of funding, consumables and planning.","PeriodicalId":18849,"journal":{"name":"Nature reviews. Chemistry","volume":"52 1","pages":""},"PeriodicalIF":36.3,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143979488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The role and structure of molecular glues in plant signalling networks 分子胶在植物信号网络中的作用和结构
IF 36.3 1区 化学
Nature reviews. Chemistry Pub Date : 2025-05-12 DOI: 10.1038/s41570-025-00717-3
Fidel Lozano-Elena, Sebastian Wendeborn
{"title":"The role and structure of molecular glues in plant signalling networks","authors":"Fidel Lozano-Elena, Sebastian Wendeborn","doi":"10.1038/s41570-025-00717-3","DOIUrl":"https://doi.org/10.1038/s41570-025-00717-3","url":null,"abstract":"<p>Protein–protein interactions are one of the pillars of all life processes. Many signalling molecules work by promoting and stabilizing these interactions. These molecular ‘glues’ bind simultaneously to two proteins inducing their interaction, which would be otherwise less favourable or non-favourable. Importantly, they can be harnessed for a clinical purpose, but, despite advances in medicine, the wealth of natural molecular glues in plants have only rarely been commercially utilized. These molecular glues may be plant-endogenous or plant-exogenous small molecules or peptides, and they may be involved in many different processes, such as growth promotion or stress response, opening new opportunities for crop protection, along with other applications. In this Review, we analyse the underlying structural motives and molecular interactions in detail, classifying the modes of actions based on their nature (small ligands versus peptides) and receptor classes. We discuss both natural metabolites and mimetics of such compounds, highlighting similarities and differences between signalling pathways and comparing them with relevant mechanisms in mammals.</p><figure></figure>","PeriodicalId":18849,"journal":{"name":"Nature reviews. Chemistry","volume":"1 1","pages":""},"PeriodicalIF":36.3,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143939744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Terahertz calorimetry spotlights the role of water in biological processes. 太赫兹量热法强调了水在生物过程中的作用。
IF 38.1 1区 化学
Nature reviews. Chemistry Pub Date : 2025-05-09 DOI: 10.1038/s41570-025-00712-8
Simone Pezzotti, Wanlin Chen, Fabio Novelli, Xiaoqing Yu, Claudius Hoberg, Martina Havenith
{"title":"Terahertz calorimetry spotlights the role of water in biological processes.","authors":"Simone Pezzotti, Wanlin Chen, Fabio Novelli, Xiaoqing Yu, Claudius Hoberg, Martina Havenith","doi":"10.1038/s41570-025-00712-8","DOIUrl":"https://doi.org/10.1038/s41570-025-00712-8","url":null,"abstract":"<p><p>Terahertz (THz) calorimetry is a framework that allows for the deduction and quantification of changes in solvation entropy and enthalpy associated with biological processes in real-time. Fundamental biological processes are inherently non-equilibrium, and a small imbalance in free energy can trigger protein condensation or folding. Although biophysical techniques typically focus mainly on structural characterization, water is often ignored. Being a generic solvent, the intermolecular protein-water interactions act as a strong competitor for intramolecular protein-protein interactions, leading to a delicate balance between functional structure formation and complete solvation. Characteristics for biological processes are large, but competing enthalpic and entropic solvation contributions to the total Gibbs free energy lead to subtle energy differences of only a few kJ mol<sup>-1</sup> that are capable of dictating biological functions. THz calorimetry spotlights these intermolecular coupled protein-water interactions. With experimental advances in THz technology, a new frequency window has opened, which is ideally suited to probe these low-frequency intermolecular interactions. The future impact of these studies is based on the belief that the observed changes in solvation entropy and enthalpy are not secondary effects but dictate biological function.</p>","PeriodicalId":18849,"journal":{"name":"Nature reviews. Chemistry","volume":" ","pages":""},"PeriodicalIF":38.1,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144044439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Power dressing 穿着
IF 36.3 1区 化学
Nature reviews. Chemistry Pub Date : 2025-04-30 DOI: 10.1038/s41570-025-00720-8
Alexander Rosu-Finsen
{"title":"Power dressing","authors":"Alexander Rosu-Finsen","doi":"10.1038/s41570-025-00720-8","DOIUrl":"https://doi.org/10.1038/s41570-025-00720-8","url":null,"abstract":"Incorporating thermoelectric materials into our everyday clothing could be an clever way of keeping our smart devices powered at all times. A study now looks into the feasibility of this, noting the importance of reaction conditions on the thermoelectric properties.","PeriodicalId":18849,"journal":{"name":"Nature reviews. Chemistry","volume":"66 1","pages":""},"PeriodicalIF":36.3,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143889410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信