Shatabdi Roy-Chowdhury, Seil Jang, Fayal Abderemane-Ali, Fiona Naughton, Michael Grabe, Daniel L. Minor
{"title":"Structure of the human K2P13.1 channel reveals a hydrophilic pore restriction and lipid cofactor site","authors":"Shatabdi Roy-Chowdhury, Seil Jang, Fayal Abderemane-Ali, Fiona Naughton, Michael Grabe, Daniel L. Minor","doi":"10.1038/s41594-024-01476-3","DOIUrl":"https://doi.org/10.1038/s41594-024-01476-3","url":null,"abstract":"<p>Polyunsaturated fatty acid (PUFA) lipids modulate the neuronal and microglial leak potassium channel K<sub>2P</sub>13.1 (THIK1) and other voltage-gated ion channel (VGIC) superfamily members through poorly understood mechanisms. Here we present cryo-electron microscopy structures of human THIK1 and mutants, revealing a unique two-chamber aqueous inner cavity obstructed by a hydrophilic barrier important for gating, the flow restrictor, and a P1–M4 intersubunit interface lipid at a site, the PUFA site, corresponding to the K<sub>2P</sub> small-molecule modulator pocket. This overlap, together with functional studies, indicates that PUFA site lipids are THIK1 cofactors. Comparison with a PUFA-responsive VGIC, K<sub>v</sub>7.1, reveals a shared modulatory role for the pore domain intersubunit interface, providing a framework for understanding PUFA action on the VGIC superfamily. Our findings reveal the distinct THIK1 architecture, highlight the importance of the P1–M4 interface for K<sub>2P</sub> control by natural and synthetic ligands and should aid in the development of THIK subfamily modulators for neuroinflammation and autism.</p>","PeriodicalId":18822,"journal":{"name":"Nature structural & molecular biology","volume":"83 1 Pt 2 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143495266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaoying Chen, Licheng Yuan, Han Wen, Qingxia Ma, Zhenfeng Deng, Yongan Xu, Zhihao Yao, Yunfei Wang, Shilong Yang, Nannan Su, Fan Yang
{"title":"Structure and function of a broad-range thermal receptor in myriapods","authors":"Xiaoying Chen, Licheng Yuan, Han Wen, Qingxia Ma, Zhenfeng Deng, Yongan Xu, Zhihao Yao, Yunfei Wang, Shilong Yang, Nannan Su, Fan Yang","doi":"10.1038/s41594-025-01495-8","DOIUrl":"https://doi.org/10.1038/s41594-025-01495-8","url":null,"abstract":"<p>Broad-range thermal receptor 1 (BRTNaC1), activated by heat at low extracellular pH, was recently identified in myriapods. Although the overexpression of BRTNaC1 leads to robust heat-activated current with a cation selectivity profile, the structure of this receptor and how it is gated by proton and heat remain to be investigated. Here we determine cryogenic electron microscopy structures of BRTNaC1 in the apo, proton-induced and heated states. Based on these structures, patch-clamp recordings and molecular dynamic simulations, we found that a ‘twist the wrist’ mechanism is used for proton activation of BRTNaC1, while heat induces broad conformational changes in BRTNaC1, including rotation and shift in the transmembrane helices to open this channel. Moreover, as testosterone inhibited BRTNaC1 activation, we identified four clustered residues important for such inhibition. Therefore, our study has established the structural basis for ligand and temperature gating in the BRTNaC1 ion channel.</p>","PeriodicalId":18822,"journal":{"name":"Nature structural & molecular biology","volume":"22 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143495267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Karin E. J. Rödström, Bisher Eymsh, Peter Proks, Mehtab S. Hayre, Sönke Cordeiro, Edward Mendez-Otalvaro, Christian Madry, Anna Rowland, Wojciech Kopec, Simon Newstead, Thomas Baukrowitz, Marcus Schewe, Stephen J. Tucker
{"title":"Cryo-EM structure of the human THIK-1 K2P K+ channel reveals a lower Y gate regulated by lipids and anesthetics","authors":"Karin E. J. Rödström, Bisher Eymsh, Peter Proks, Mehtab S. Hayre, Sönke Cordeiro, Edward Mendez-Otalvaro, Christian Madry, Anna Rowland, Wojciech Kopec, Simon Newstead, Thomas Baukrowitz, Marcus Schewe, Stephen J. Tucker","doi":"10.1038/s41594-025-01497-6","DOIUrl":"https://doi.org/10.1038/s41594-025-01497-6","url":null,"abstract":"<p>THIK-1 (<i>KCNK13</i>) is a halothane-inhibited and anionic-lipid-activated two-pore domain (K2P) K<sup>+</sup> channel implicated in microglial activation and neuroinflammation, and a current target for the treatment of neurodegenerative disorders, for example Alzheimer’s disease and amyothropic lateral sclerosis (ALS). However, compared to other K2P channels, little is known about the structural and functional properties of THIK-1. Here we present a 3.16-Å-resolution cryo-EM structure of human THIK-1 that reveals several distinct features, in particular, a tyrosine in M4 that contributes to a lower ‘Y gate’ that opens upon activation by physiologically relevant G-protein-coupled receptor and lipid signaling pathways. We demonstrate that linoleic acid bound within a modulatory pocket adjacent to the filter influences channel activity, and that halothane inhibition involves a binding site within the inner cavity, both resulting in conformational changes to the Y gate. Finally, the extracellular cap domain contains positively charged residues that line the ion exit pathway and contribute to the distinct biophysical properties of this channel. Overall, our results provide structural insights into THIK-1 function and identify distinct regulatory sites that expand its potential as a drug target for the modulation of microglial function.</p>","PeriodicalId":18822,"journal":{"name":"Nature structural & molecular biology","volume":"27 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143495270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"CTCF and cohesin mediate the chromatin–speckle ground-state association","authors":"","doi":"10.1038/s41594-024-01466-5","DOIUrl":"https://doi.org/10.1038/s41594-024-01466-5","url":null,"abstract":"The association of chromatin with nuclear speckles is crucial in gene regulation. Here, cell biology and genomic methods revealed that the chromatin factors CTCF and cohesin are key organizers of chromatin–speckle interactions. This organization enhanced speckle-proximal gene activation, linking nuclear architecture to gene regulation and developmental disorders.","PeriodicalId":18822,"journal":{"name":"Nature structural & molecular biology","volume":"29 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143495268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ruofan Yu, Shelby Roseman, Allison P. Siegenfeld, Zachary Gardner, Son C. Nguyen, Khoa A. Tran, Eric F. Joyce, Rajan Jain, Brian B. Liau, Ian D. Krantz, Katherine A. Alexander, Shelley L. Berger
{"title":"CTCF/RAD21 organize the ground state of chromatin–nuclear speckle association","authors":"Ruofan Yu, Shelby Roseman, Allison P. Siegenfeld, Zachary Gardner, Son C. Nguyen, Khoa A. Tran, Eric F. Joyce, Rajan Jain, Brian B. Liau, Ian D. Krantz, Katherine A. Alexander, Shelley L. Berger","doi":"10.1038/s41594-024-01465-6","DOIUrl":"https://doi.org/10.1038/s41594-024-01465-6","url":null,"abstract":"<p>Recent findings indicate that nuclear speckles, a distinct type of nuclear body, interact with certain chromatin regions in a ground state. Here, we report that the chromatin structural factors CTCF and cohesin are required for full ground-state association between DNA and nuclear speckles. We identified a putative speckle-targeting motif (STM) within cohesin subunit RAD21 and demonstrated that the STM is required for chromatin–nuclear speckle association, disruption of which also impaired induction of speckle-associated genes. Depletion of the cohesin-releasing factor WAPL, which stabilizes cohesin on chromatin, resulted in reinforcement of DNA–speckle contacts and enhanced inducibility of speckle-associated genes. Additionally, we observed disruption of chromatin–nuclear speckle association in patient-derived cells with Cornelia de Lange syndrome, a congenital neurodevelopmental disorder involving defective cohesin pathways. In summary, our findings reveal a mechanism for establishing the ground state of chromatin–speckle association and promoting gene inducibility, with relevance to human disease.</p>","PeriodicalId":18822,"journal":{"name":"Nature structural & molecular biology","volume":"11 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143462895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Structural insights into how DEK nucleosome binding facilitates H3K27 trimethylation in chromatin","authors":"Tomoya Kujirai, Kenta Echigoya, Yusuke Kishi, Mai Saeki, Tomoko Ito, Junko Kato, Lumi Negishi, Hiroshi Kimura, Hiroshi Masumoto, Yoshimasa Takizawa, Yukiko Gotoh, Hitoshi Kurumizaka","doi":"10.1038/s41594-025-01493-w","DOIUrl":"https://doi.org/10.1038/s41594-025-01493-w","url":null,"abstract":"<p>Structural diversity of the nucleosome affects chromatin conformations and regulates eukaryotic genome functions. Here we identify DEK, whose function is unknown, as a nucleosome-binding protein. In embryonic neural progenitor cells, DEK colocalizes with H3 K27 trimethylation (H3K27me3), the facultative heterochromatin mark. DEK stimulates the methyltransferase activity of Polycomb repressive complex 2 (PRC2), which is responsible for H3K27me3 deposition in vitro. Cryo-electron microscopy structures of the DEK–nucleosome complexes reveal that DEK binds the nucleosome by its tripartite DNA-binding mode on the dyad and linker DNAs and interacts with the nucleosomal acidic patch by its newly identified histone-binding region. The DEK–nucleosome interaction mediates linker DNA reorientation and induces chromatin compaction, which may facilitate PRC2 activation. These findings provide mechanistic insights into chromatin structure-mediated gene regulation by DEK.</p>","PeriodicalId":18822,"journal":{"name":"Nature structural & molecular biology","volume":"16 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143462491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chad W. Hicks, Colin R. Gliech, Sanim Rahman, Xiangbin Zhang, Andrew S. Eneim, Stacy J. Vasquez, Andrew J. Holland, Cynthia Wolberger
{"title":"Haspin kinase binds to a nucleosomal DNA supergroove","authors":"Chad W. Hicks, Colin R. Gliech, Sanim Rahman, Xiangbin Zhang, Andrew S. Eneim, Stacy J. Vasquez, Andrew J. Holland, Cynthia Wolberger","doi":"10.1038/s41594-025-01502-y","DOIUrl":"https://doi.org/10.1038/s41594-025-01502-y","url":null,"abstract":"<p>Phosphorylation of histone H3 threonine 3 (H3T3) by Haspin recruits the chromosomal passenger complex to the inner centromere and ensures proper cell cycle progression through mitosis. The mechanism by which Haspin binds to nucleosomes to phosphorylate H3T3 is not known. Here we report cryogenic electron microscopy structures of the human Haspin kinase domain bound to a nucleosome. In contrast with previous structures of histone-modifying enzymes, Haspin solely contacts the nucleosomal DNA, inserting into a supergroove formed by apposing major grooves of two DNA gyres. This binding mode provides a plausible mechanism by which Haspin can bind to nucleosomes in a condensed chromatin environment to phosphorylate H3T3. We identify key basic residues in the Haspin kinase domain that are essential for phosphorylation of nucleosomal histone H3 and binding to mitotic chromatin. Our structural data provide notable insight into a histone-modifying enzyme that binds to nucleosomes solely through DNA contacts.</p>","PeriodicalId":18822,"journal":{"name":"Nature structural & molecular biology","volume":"20 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143451606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Julia A. Rocereta, Toni Sturhahn, Ruth A. Pumroy, Tabea C. Fricke, Christine Herzog, Andreas Leffler, Vera Moiseenkova-Bell
{"title":"Structural insights into TRPV2 modulation by probenecid","authors":"Julia A. Rocereta, Toni Sturhahn, Ruth A. Pumroy, Tabea C. Fricke, Christine Herzog, Andreas Leffler, Vera Moiseenkova-Bell","doi":"10.1038/s41594-025-01494-9","DOIUrl":"https://doi.org/10.1038/s41594-025-01494-9","url":null,"abstract":"<p>The transient receptor potential vanilloid 2 (TRPV2) cation channel is a key player in cardiovascular physiology and pathophysiology. Probenecid (PBC), an FDA-approved uricosuric agent thought to activate TRPV2, has shown promise in enhancing cardiovascular function in both preclinical and clinical studies. Here our electrophysiological data reveal that PBC significantly potentiates rat TRPV2 to known stimuli, and cryo electron microscopy structures show that PBC directly interacts with rat TRPV2 in a previously unidentified intracellular binding pocket. PBC binding at a conserved TRPV2-specific histidine prevents the channel from taking on the inactivated carboxyl-terminal conformation. This effect extends to TRPV1 and TRPV3 channels when glutamine is substituted with histidine at the corresponding position, increasing their sensitivity to PBC. While PBC alone does not induce TRPV2 opening, its combination with 2-aminoethoxydiphenyl borate enables the channel to adopt an intermediate, potentiated state. Our results offer insights into potential therapeutic advancements for TRPV2 through this pocket.</p>","PeriodicalId":18822,"journal":{"name":"Nature structural & molecular biology","volume":"4 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143443302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kseniia Lysakovskaia, Arjun Devadas, Björn Schwalb, Michael Lidschreiber, Patrick Cramer
{"title":"Promoter-proximal RNA polymerase II termination regulates transcription during human cell type transition","authors":"Kseniia Lysakovskaia, Arjun Devadas, Björn Schwalb, Michael Lidschreiber, Patrick Cramer","doi":"10.1038/s41594-025-01486-9","DOIUrl":"https://doi.org/10.1038/s41594-025-01486-9","url":null,"abstract":"<p>Metazoan gene transcription by RNA polymerase II (Pol II) is regulated in the promoter-proximal region. Pol II can undergo termination in the promoter-proximal region but whether this can contribute to transcription regulation in cells remains unclear. Here we extend our previous multiomics analysis to quantify changes in transcription kinetics during a human cell type transition event. We observe that upregulation of transcription involves an increase in initiation frequency and, at a set of genes, a decrease in promoter-proximal termination. In turn, downregulation of transcription involves a decrease in initiation frequency and an increase in promoter-proximal termination. Thus, promoter-proximal termination of Pol II contributes to the regulation of human gene transcription.</p>","PeriodicalId":18822,"journal":{"name":"Nature structural & molecular biology","volume":"14 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143385423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Clément M. Potel, Mira Lea Burtscher, Martin Garrido-Rodriguez, Amber Brauer-Nikonow, Isabelle Becher, Cecile Le Sueur, Athanasios Typas, Michael Zimmermann, Mikhail M. Savitski
{"title":"Uncovering protein glycosylation dynamics and heterogeneity using deep quantitative glycoprofiling (DQGlyco)","authors":"Clément M. Potel, Mira Lea Burtscher, Martin Garrido-Rodriguez, Amber Brauer-Nikonow, Isabelle Becher, Cecile Le Sueur, Athanasios Typas, Michael Zimmermann, Mikhail M. Savitski","doi":"10.1038/s41594-025-01485-w","DOIUrl":"https://doi.org/10.1038/s41594-025-01485-w","url":null,"abstract":"<p>Protein glycosylation regulates essential cellular processes such as signaling, adhesion and cell–cell interactions; however, dysregulated glycosylation is associated with diseases such as cancer. Here we introduce deep quantitative glycoprofiling (DQGlyco), a robust method that integrates high-throughput sample preparation, highly sensitive detection and precise multiplexed quantification to investigate protein glycosylation dynamics at an unprecedented depth. Using DQGlyco, we profiled the mouse brain glycoproteome, identifying 177,198 unique <i>N</i>-glycopeptides—25 times more than previous studies. We quantified glycopeptide changes in human cells treated with a fucosylation inhibitor and characterized surface-exposed glycoforms. Furthermore, we analyzed tissue-specific glycosylation patterns in mice and demonstrated that a defined gut microbiota substantially remodels the mouse brain glycoproteome, shedding light on the link between the gut microbiome and brain protein functions. Additionally, we developed a novel strategy to evaluate glycoform solubility, offering new insights into their biophysical properties. Overall, the in-depth profiling offered by DQGlyco uncovered extensive complexity in glycosylation regulation.</p>","PeriodicalId":18822,"journal":{"name":"Nature structural & molecular biology","volume":"15 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143375427","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}