Nature structural & molecular biology最新文献

筛选
英文 中文
Structural insights into CXCR4 modulation and oligomerization 对 CXCR4 调制和寡聚化的结构见解
Nature structural & molecular biology Pub Date : 2024-09-23 DOI: 10.1038/s41594-024-01397-1
Kei Saotome, Luke L. McGoldrick, Jo-Hao Ho, Trudy F. Ramlall, Sweta Shah, Michael J. Moore, Jee Hae Kim, Raymond Leidich, William C. Olson, Matthew C. Franklin
{"title":"Structural insights into CXCR4 modulation and oligomerization","authors":"Kei Saotome, Luke L. McGoldrick, Jo-Hao Ho, Trudy F. Ramlall, Sweta Shah, Michael J. Moore, Jee Hae Kim, Raymond Leidich, William C. Olson, Matthew C. Franklin","doi":"10.1038/s41594-024-01397-1","DOIUrl":"https://doi.org/10.1038/s41594-024-01397-1","url":null,"abstract":"<p>Activation of the chemokine receptor CXCR4 by its chemokine ligand CXCL12 regulates diverse cellular processes. Previously reported crystal structures of CXCR4 revealed the architecture of an inactive, homodimeric receptor. However, many structural aspects of CXCR4 remain poorly understood. Here, we use cryo-electron microscopy to investigate various modes of human CXCR4 regulation. CXCL12 activates CXCR4 by inserting its N terminus deep into the CXCR4 orthosteric pocket. The binding of US Food and Drug Administration-approved antagonist AMD3100 is stabilized by electrostatic interactions with acidic residues in the seven-transmembrane-helix bundle. A potent antibody blocker, REGN7663, binds across the extracellular face of CXCR4 and inserts its complementarity-determining region H3 loop into the orthosteric pocket. Trimeric and tetrameric structures of CXCR4 reveal modes of G-protein-coupled receptor oligomerization. We show that CXCR4 adopts distinct subunit conformations in trimeric and tetrameric assemblies, highlighting how oligomerization could allosterically regulate chemokine receptor function.</p>","PeriodicalId":18822,"journal":{"name":"Nature structural & molecular biology","volume":"203 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142276833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Catalytic and noncatalytic functions of DNA polymerase κ in translesion DNA synthesis DNA 聚合酶 κ 在转座子 DNA 合成中的催化和非催化功能
Nature structural & molecular biology Pub Date : 2024-09-19 DOI: 10.1038/s41594-024-01395-3
Selene Sellés-Baiget, Sara M. Ambjørn, Alberto Carli, Ivo A. Hendriks, Irene Gallina, Norman E. Davey, Bente Benedict, Alessandra Zarantonello, Sampath A. Gadi, Bob Meeusen, Emil P. T. Hertz, Laura Slappendel, Daniel Semlow, Shana Sturla, Michael L. Nielsen, Jakob Nilsson, Thomas C. R. Miller, Julien P. Duxin
{"title":"Catalytic and noncatalytic functions of DNA polymerase κ in translesion DNA synthesis","authors":"Selene Sellés-Baiget, Sara M. Ambjørn, Alberto Carli, Ivo A. Hendriks, Irene Gallina, Norman E. Davey, Bente Benedict, Alessandra Zarantonello, Sampath A. Gadi, Bob Meeusen, Emil P. T. Hertz, Laura Slappendel, Daniel Semlow, Shana Sturla, Michael L. Nielsen, Jakob Nilsson, Thomas C. R. Miller, Julien P. Duxin","doi":"10.1038/s41594-024-01395-3","DOIUrl":"https://doi.org/10.1038/s41594-024-01395-3","url":null,"abstract":"<p>Translesion DNA synthesis (TLS) is a cellular process that enables the bypass of DNA lesions encountered during DNA replication and is emerging as a primary target of chemotherapy. Among vertebrate DNA polymerases, polymerase κ (Polκ) has the distinctive ability to bypass minor groove DNA adducts in vitro. However, Polκ is also required for cells to overcome major groove DNA adducts but the basis of this requirement is unclear. Here, we combine CRISPR base-editor screening technology in human cells with TLS analysis of defined DNA lesions in <i>Xenopus</i> egg extracts to unravel the functions and regulations of Polκ during lesion bypass. Strikingly, we show that Polκ has two main functions during TLS, which are differentially regulated by Rev1 binding. On the one hand, Polκ is essential to replicate across a minor groove DNA lesion in a process that depends on PCNA ubiquitylation but is independent of Rev1. On the other hand, through its cooperative interaction with Rev1 and ubiquitylated PCNA, Polκ appears to stabilize the Rev1–Polζ extension complex on DNA to allow extension past major groove DNA lesions and abasic sites, in a process that is independent of Polκ’s catalytic activity. Together, our work identifies catalytic and noncatalytic functions of Polκ in TLS and reveals important regulatory mechanisms underlying the unique domain architecture present at the C-terminal end of Y-family TLS polymerases.</p>","PeriodicalId":18822,"journal":{"name":"Nature structural & molecular biology","volume":"10 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142245303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pseudouridine guides germline small RNA transport and epigenetic inheritance 伪尿嘧啶引导种系小 RNA 运输和表观遗传
Nature structural & molecular biology Pub Date : 2024-09-06 DOI: 10.1038/s41594-024-01392-6
Rowan P. Herridge, Jakub Dolata, Valentina Migliori, Cristiane de Santis Alves, Filipe Borges, Andrea J. Schorn, Frédéric van Ex, Ann Lin, Mateusz Bajczyk, Jean-Sebastien Parent, Tommaso Leonardi, Alan Hendrick, Tony Kouzarides, Robert A. Martienssen
{"title":"Pseudouridine guides germline small RNA transport and epigenetic inheritance","authors":"Rowan P. Herridge, Jakub Dolata, Valentina Migliori, Cristiane de Santis Alves, Filipe Borges, Andrea J. Schorn, Frédéric van Ex, Ann Lin, Mateusz Bajczyk, Jean-Sebastien Parent, Tommaso Leonardi, Alan Hendrick, Tony Kouzarides, Robert A. Martienssen","doi":"10.1038/s41594-024-01392-6","DOIUrl":"https://doi.org/10.1038/s41594-024-01392-6","url":null,"abstract":"<p>Developmental epigenetic modifications in plants and animals are mostly reset during gamete formation but some are inherited from the germline. Small RNAs guide these epigenetic modifications but how inherited small RNAs are distinguished in plants and animals is unknown. Pseudouridine (Ψ) is the most abundant RNA modification but has not been explored in small RNAs. Here, we develop assays to detect Ψ in short RNA sequences, demonstrating its presence in mouse and <i>Arabidopsis</i> microRNAs. Germline small RNAs, namely epigenetically activated small interfering RNAs (easiRNAs) in <i>Arabidopsis</i> pollen and Piwi-interacting RNAs in mouse testes, are enriched for Ψ. In pollen, pseudouridylated easiRNAs are transported to sperm cells from the vegetative nucleus, and <i>PAUSED/HEN5 (PSD)</i>, the plant homolog of Exportin-t, interacts genetically with Ψ and is required for this transport. We further show that Exportin-t is required for the triploid block: small RNA dosage-dependent seed lethality that is epigenetically inherited from pollen. Thus, Ψ has a conserved role in marking inherited small RNAs in the germline.</p>","PeriodicalId":18822,"journal":{"name":"Nature structural & molecular biology","volume":"380 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142142436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Distinct stabilization of the human T cell leukemia virus type 1 immature Gag lattice 人类 T 细胞白血病病毒 1 型未成熟 Gag 网格的独特稳定性
Nature structural & molecular biology Pub Date : 2024-09-06 DOI: 10.1038/s41594-024-01390-8
Martin Obr, Mathias Percipalle, Darya Chernikova, Huixin Yang, Andreas Thader, Gergely Pinke, Dario Porley, Louis M. Mansky, Robert A. Dick, Florian K. M. Schur
{"title":"Distinct stabilization of the human T cell leukemia virus type 1 immature Gag lattice","authors":"Martin Obr, Mathias Percipalle, Darya Chernikova, Huixin Yang, Andreas Thader, Gergely Pinke, Dario Porley, Louis M. Mansky, Robert A. Dick, Florian K. M. Schur","doi":"10.1038/s41594-024-01390-8","DOIUrl":"https://doi.org/10.1038/s41594-024-01390-8","url":null,"abstract":"<p>Human T cell leukemia virus type 1 (HTLV-1) immature particles differ in morphology from other retroviruses, suggesting a distinct way of assembly. Here we report the results of cryo-electron tomography studies of HTLV-1 virus-like particles assembled in vitro, as well as derived from cells. This work shows that HTLV-1 uses a distinct mechanism of Gag–Gag interactions to form the immature viral lattice. Analysis of high-resolution structural information from immature capsid (CA) tubular arrays reveals that the primary stabilizing component in HTLV-1 is the N-terminal domain of CA. Mutagenesis analysis supports this observation. This distinguishes HTLV-1 from other retroviruses, in which the stabilization is provided primarily by the C-terminal domain of CA. These results provide structural details of the quaternary arrangement of Gag for an immature deltaretrovirus and this helps explain why HTLV-1 particles are morphologically distinct.</p>","PeriodicalId":18822,"journal":{"name":"Nature structural & molecular biology","volume":"31 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142142435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The cyanobacterial protein VIPP1 forms ESCRT-III-like structures on lipid bilayers 蓝藻蛋白 VIPP1 在脂质双分子层上形成类似 ESCRT-III 的结构
Nature structural & molecular biology Pub Date : 2024-07-26 DOI: 10.1038/s41594-024-01367-7
Sichen Pan, Karin Gries, Benjamin D. Engel, Michael Schroda, Christoph A. Haselwandter, Simon Scheuring
{"title":"The cyanobacterial protein VIPP1 forms ESCRT-III-like structures on lipid bilayers","authors":"Sichen Pan, Karin Gries, Benjamin D. Engel, Michael Schroda, Christoph A. Haselwandter, Simon Scheuring","doi":"10.1038/s41594-024-01367-7","DOIUrl":"https://doi.org/10.1038/s41594-024-01367-7","url":null,"abstract":"<p>The biogenesis and maintenance of thylakoid membranes require vesicle-inducing protein in plastids 1 (VIPP1). VIPP1 is a member of the endosomal sorting complex required for transport-III (ESCRT-III) superfamily, whose members form diverse filament-based supramolecular structures that facilitate membrane deformation and fission. VIPP1 cryo-electron microscopy (EM) structures in solution revealed helical rods and baskets of stacked rings, with amphipathic membrane-binding domains in the lumen. However, how VIPP1 interacts with membranes remains largely unknown. Here, using high-speed atomic force microscopy (HS-AFM), we show that VIPP1 assembles into right-handed chiral spirals and regular polygons on supported lipid bilayers via ESCRT-III-like filament assembly and dynamics. VIPP1 filaments grow clockwise into spirals through polymerization at a ring-shaped central polymerization hub, and into polygons through clockwise polymerization at the sector peripheries. Interestingly, VIPP1 initially forms Archimedean spirals, which upon maturation transform into logarithmic spirals through lateral annealing of strands to the outermore low-curvature spiral turns.</p>","PeriodicalId":18822,"journal":{"name":"Nature structural & molecular biology","volume":"12 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141764278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Epitranscriptome regulation. 上皮转录组调控。
Nature structural & molecular biology Pub Date : 2018-09-28 DOI: 10.1038/s41594-018-0140-7
Dan Dominissini, Gideon Rechavi
{"title":"Epitranscriptome regulation.","authors":"Dan Dominissini, Gideon Rechavi","doi":"10.1038/s41594-018-0140-7","DOIUrl":"10.1038/s41594-018-0140-7","url":null,"abstract":"","PeriodicalId":18822,"journal":{"name":"Nature structural & molecular biology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36535441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Intersubunit capture of regulatory segments is a component of cooperative CaMKII activation. 调控片段的亚基间捕获是CaMKII协同激活的一个组成部分。
Nature structural & molecular biology Pub Date : 2010-03-01 DOI: 10.1038/nsmb.1751
Luke H Chao, Patricia Pellicena, Sebastian Deindl, Lauren A Barclay, Howard Schulman, John Kuriyan
{"title":"Intersubunit capture of regulatory segments is a component of cooperative CaMKII activation.","authors":"Luke H Chao,&nbsp;Patricia Pellicena,&nbsp;Sebastian Deindl,&nbsp;Lauren A Barclay,&nbsp;Howard Schulman,&nbsp;John Kuriyan","doi":"10.1038/nsmb.1751","DOIUrl":"https://doi.org/10.1038/nsmb.1751","url":null,"abstract":"<p><p>The dodecameric holoenzyme of calcium-calmodulin-dependent protein kinase II (CaMKII) responds to high-frequency Ca(2+) pulses to become Ca(2+) independent. A simple coincidence-detector model for Ca(2+)-frequency dependency assumes noncooperative activation of kinase domains. We show that activation of CaMKII by Ca(2+)-calmodulin is cooperative, with a Hill coefficient of approximately 3.0, implying sequential kinase-domain activation beyond dimeric units. We present data for a model in which cooperative activation includes the intersubunit 'capture' of regulatory segments. Such a capture interaction is seen in a crystal structure that shows extensive contacts between the regulatory segment of one kinase and the catalytic domain of another. These interactions are mimicked by a natural inhibitor of CaMKII. Our results show that a simple coincidence-detection model cannot be operative and point to the importance of kinetic dissection of the frequency-response mechanism in future experiments.</p>","PeriodicalId":18822,"journal":{"name":"Nature structural & molecular biology","volume":"17 3","pages":"264-72"},"PeriodicalIF":0.0,"publicationDate":"2010-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1038/nsmb.1751","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9338579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 115
Domain structure of separase and its binding to securin as determined by EM. 分离酶的结构域结构及其与securin的结合。
Nature structural & molecular biology Pub Date : 2005-06-01 Epub Date: 2005-05-08 DOI: 10.1038/nsmb935
Hector Viadiu, Olaf Stemmann, Marc W Kirschner, Thomas Walz
{"title":"Domain structure of separase and its binding to securin as determined by EM.","authors":"Hector Viadiu,&nbsp;Olaf Stemmann,&nbsp;Marc W Kirschner,&nbsp;Thomas Walz","doi":"10.1038/nsmb935","DOIUrl":"https://doi.org/10.1038/nsmb935","url":null,"abstract":"<p><p>After the degradation of its inhibitor securin, separase initiates chromosome segregation during the metaphase-to-anaphase transition by cleaving cohesin. Here we present a density map at a resolution of 25 A of negatively stained separase-securin complex. Based on labeling data and sequence analysis, we propose a model for the structure of separase, consisting of 26 ARM repeats, an unstructured region of 280 residues and two caspase-like domains, with securin binding to the ARM repeats.</p>","PeriodicalId":18822,"journal":{"name":"Nature structural & molecular biology","volume":"12 6","pages":"552-3"},"PeriodicalIF":0.0,"publicationDate":"2005-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1038/nsmb935","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25271368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 51
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信