Molecular Oral Microbiology最新文献

筛选
英文 中文
Topology and functional characterization of major outer membrane proteins of Treponema maltophilum and Treponema lecithinolyticum 嗜麦芽链球菌和卵磷脂溶解性链球菌主要外膜蛋白的拓扑结构和功能表征
IF 3.7 3区 医学
Molecular Oral Microbiology Pub Date : 2024-09-12 DOI: 10.1111/omi.12484
Natalie K. Anselmi, Stephen T. Vanyo, Nicholas D. Clark, Dayron M. Leyva Rodriguez, Megan M. Jones, Sara Rosenthal, Dhara Patel, Richard T. Marconi, Michelle B. Visser
{"title":"Topology and functional characterization of major outer membrane proteins of Treponema maltophilum and Treponema lecithinolyticum","authors":"Natalie K. Anselmi, Stephen T. Vanyo, Nicholas D. Clark, Dayron M. Leyva Rodriguez, Megan M. Jones, Sara Rosenthal, Dhara Patel, Richard T. Marconi, Michelle B. Visser","doi":"10.1111/omi.12484","DOIUrl":"https://doi.org/10.1111/omi.12484","url":null,"abstract":"Numerous <jats:italic>Treponema</jats:italic> species are prevalent in the dysbiotic subgingival microbial community during periodontitis. The major outer sheath protein is a highly expressed virulence factor of the well‐characterized species <jats:italic>Treponema denticola</jats:italic>. Msp forms an oligomeric membrane protein complex with adhesin and porin properties and contributes to host–microbial interaction. <jats:italic>Treponema maltophilum</jats:italic> and <jats:italic>Treponema lecithinolyticum</jats:italic> species are also prominent during periodontitis but are relatively understudied. Msp‐like membrane surface proteins exist in <jats:italic>T. maltophilum</jats:italic> (MspA) and <jats:italic>T. lecithinolyticum</jats:italic> (MspTL), but limited information exists regarding their structural features or functionality. Protein profiling reveals numerous differences between these species, but minimal differences between strains of the same species. Using protein modeling tools, we predict MspA and MspTL monomeric forms to be large β‐barrel structures composed of 20 all‐next‐neighbor antiparallel β strands which most likely adopt a homotrimer formation. Using cell fractionation, Triton X‐114 phase partitioning, heat modifiability, and chemical and detergent release assays, we found evidence of amphiphilic integral membrane‐associated oligomerization for both native MspA and MspTL in intact spirochetes. Proteinase K accessibility and immunofluorescence assays demonstrate surface exposure of MspA and MspTL. Functionally, purified recombinant MspA or MspTL monomer proteins can impair neutrophil chemotaxis. Expressions of MspA or MspTL with a PelB leader sequence in <jats:italic>Escherichia coli</jats:italic> also demonstrate surface exposure and can impair neutrophil chemotaxis in an in vivo air pouch model of inflammation. Collectively, our data demonstrate that MspA and MspTL membrane proteins can contribute to pathogenesis of these understudied oral spirochete species.","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142191748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Role of CRISPR-Cas systems in periodontal disease pathogenesis and potential for periodontal therapy: A review. CRISPR-Cas 系统在牙周病发病机制中的作用以及牙周治疗的潜力:综述。
IF 2.8 3区 医学
Molecular Oral Microbiology Pub Date : 2024-09-03 DOI: 10.1111/omi.12483
Aditi Chopra, Geeta Bhuvanagiri, Kshitija Natu, Avneesh Chopra
{"title":"Role of CRISPR-Cas systems in periodontal disease pathogenesis and potential for periodontal therapy: A review.","authors":"Aditi Chopra, Geeta Bhuvanagiri, Kshitija Natu, Avneesh Chopra","doi":"10.1111/omi.12483","DOIUrl":"https://doi.org/10.1111/omi.12483","url":null,"abstract":"<p><p>Clustered regularly interspaced short palindromic repeats (CRISPRs) are DNA sequences capable of editing a host genome sequence. CRISPR and its specific CRISPR-associated (Cas) protein complexes have been adapted for various applications. These include activating or inhibiting specific genetic sequences or acting as molecular scissors to cut and modify the host DNA precisely. CRISPR-Cas systems are also naturally present in many oral bacteria, where they aid in nutrition, biofilm formation, inter- and intraspecies communication (quorum sensing), horizontal gene transfer, virulence, inflammation modulation, coinfection, and immune response evasion. It even functions as an adaptive immune system, defending microbes against invading viruses and foreign genetic elements from other bacteria by targeting and degrading their DNA. Recently, CRISPR-Cas systems have been tested as molecular editing tools to manipulate specific genes linked with periodontal disease (such as periodontitis) and as novel methods of delivering antimicrobial agents to overcome antimicrobial resistance. With the rapidly increasing role of CRISPR in treating inflammatory diseases, its application in periodontal disease is also becoming popular. Therefore, this review aims to discuss the different types of CRISPR-Cas in oral microbes and their role in periodontal disease pathogenesis and precision periodontal therapy.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142120234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Involvement of PG1037 in the repair of 8-oxo-7,8-dihydroguanine caused by oxidative stress in Porphyromonas gingivalis. PG1037 参与修复牙龈卟啉单胞菌氧化应激引起的 8-氧代-7,8-二氢鸟嘌呤。
IF 2.8 3区 医学
Molecular Oral Microbiology Pub Date : 2024-08-29 DOI: 10.1111/omi.12482
Yuetan Dou, Arunima Mishra, Hansel M Fletcher
{"title":"Involvement of PG1037 in the repair of 8-oxo-7,8-dihydroguanine caused by oxidative stress in Porphyromonas gingivalis.","authors":"Yuetan Dou, Arunima Mishra, Hansel M Fletcher","doi":"10.1111/omi.12482","DOIUrl":"https://doi.org/10.1111/omi.12482","url":null,"abstract":"<p><strong>Background: </strong>The PG1037 gene is part of the uvrA-PG1037-pcrA operon in Porphyromonas gingivalis. It encodes for a protein of unknown function upregulated under hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>)-induced oxidative stress. Bioinformatic analysis shows that PG1037 has a zinc-finger motif, two peroxidase motifs, and one cytidylate kinase domain. The aim of this study is to characterize further the role of the PG1037 recombinant protein in the unique 8-oxoG repair system in P. gingivalis.</p><p><strong>Materials and methods: </strong>PG1037 recombinant proteins with deletions in the zinc-finger or peroxidase motifs were created. Electrophoretic mobility shift assays were used to evaluate the ability of the recombinant proteins to bind 8-oxoG-containing oligonucleotides. Zinc binding, peroxidase, and Fenton reaction assays were used to assess the functional roles of the rPG1037 protein. A bacterial adenylate cyclase two-bride assay was used to identify the partner protein of PG1037 in the repair of 8-oxoG.</p><p><strong>Results: </strong>The recombinant PG1037 (rPG1037) protein carrying an N-terminal His-tag demonstrated an ability to recognize and bind 8-oxoG-containing oligonucleotide. In contrast to the wild-type rPG1037 protein, the zinc-finger motif deletion resulted in the loss of zinc and 8-oxoG binding activities. A deletion of the peroxidase motif-1 showed a decrease in peroxidase activity. Using a bacterial adenylate cyclase two-hybrid system, there was no observed protein-protein interaction of PG1037 with UvrA (PG1036), PcrA (PG1038), or mismatch repair system proteins.</p><p><strong>Conclusions: </strong>Taken together, the results show that PG1037 is an important member of a novel mechanism that recognizes and repairs oxidative stress-induced DNA damage in P. gingivalis.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142109606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Periodontal treatment causes a longitudinal increase in nitrite-producing bacteria. 牙周治疗会导致产生亚硝酸盐的细菌纵向增加。
IF 2.8 3区 医学
Molecular Oral Microbiology Pub Date : 2024-08-22 DOI: 10.1111/omi.12479
Annabel Simpson, William Johnston, Miguel Carda-Diéguez, Alex Mira, Chris Easton, Fiona L Henriquez, Shauna Culshaw, Bob T Rosier, Mia Burleigh
{"title":"Periodontal treatment causes a longitudinal increase in nitrite-producing bacteria.","authors":"Annabel Simpson, William Johnston, Miguel Carda-Diéguez, Alex Mira, Chris Easton, Fiona L Henriquez, Shauna Culshaw, Bob T Rosier, Mia Burleigh","doi":"10.1111/omi.12479","DOIUrl":"https://doi.org/10.1111/omi.12479","url":null,"abstract":"<p><strong>Background: </strong>The oral microbiome-dependent nitrate (NO<sub>3</sub> <sup>-</sup>)-nitrite (NO<sub>2</sub> <sup>-</sup>)-nitric oxide (NO) pathway may help regulate blood pressure. NO<sub>2</sub> <sup>-</sup>-producing bacteria in subgingival plaque are reduced in relative abundance in patients with untreated periodontitis compared with periodontally healthy patients. In periodontitis patients, the NO<sub>2</sub> <sup>-</sup>-producing bacteria increase several months after periodontal treatment. The early effects of periodontal treatment on NO<sub>2</sub> <sup>-</sup>-producing bacteria and the NO<sub>3</sub> <sup>-</sup>-NO<sub>2</sub> <sup>-</sup>-NO pathway remain unknown. The aim of this study was to determine how periodontal treatment affects the oral NO<sub>2</sub> <sup>-</sup>-producing microbiome and salivary NO<sub>3</sub> <sup>-</sup> and NO<sub>2</sub> <sup>-</sup> levels over time.</p><p><strong>Methods: </strong>The subgingival microbiota of 38 periodontitis patients was analysed before (baseline [BL]) and 1, 7 and 90 days after periodontal treatment. Changes in NO<sub>2</sub> <sup>-</sup>-producing bacteria and periodontitis-associated bacteria were determined by 16s rRNA Illumina sequencing. Saliva samples were collected at all-time points to determine NO<sub>3</sub> <sup>-</sup> and NO<sub>2</sub> <sup>-</sup> levels using gas-phase chemiluminescence.</p><p><strong>Results: </strong>A significant increase was observed in the relative abundance of NO<sub>2</sub> <sup>-</sup>-producing species between BL and all subsequent timepoints (all p < 0.001). Periodontitis-associated species decreased at all timepoints, relative to BL (all p < 0.02). NO<sub>2</sub> <sup>-</sup>-producing species negatively correlated with periodontitis-associated species at all timepoints, with this relationship strongest 90 days post-treatment (ρ = -0.792, p < 0.001). Despite these findings, no significant changes were found in salivary NO<sub>3</sub> <sup>-</sup> and NO<sub>2</sub> <sup>-</sup> over time (all p > 0.05).</p><p><strong>Conclusions: </strong>Periodontal treatment induced an immediate increase in the relative abundance of health-associated NO<sub>2</sub> <sup>-</sup>-producing bacteria. This increase persisted throughout periodontal healing. Future studies should test the effect of periodontal treatment combined with NO<sub>3</sub> <sup>-</sup> intake on periodontal and cardiovascular health.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142018017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of fluid shear stress on oral biofilm formation and composition and the transcriptional response of Streptococcus gordonii. 流体剪切应力对口腔生物膜的形成和组成以及戈登链球菌转录反应的影响。
IF 2.8 3区 医学
Molecular Oral Microbiology Pub Date : 2024-08-19 DOI: 10.1111/omi.12481
Brittany L Nairn, Bruno P Lima, Ruoqiong Chen, Judy Q Yang, Guanju Wei, Ashwani K Chumber, Mark C Herzberg
{"title":"Effects of fluid shear stress on oral biofilm formation and composition and the transcriptional response of Streptococcus gordonii.","authors":"Brittany L Nairn, Bruno P Lima, Ruoqiong Chen, Judy Q Yang, Guanju Wei, Ashwani K Chumber, Mark C Herzberg","doi":"10.1111/omi.12481","DOIUrl":"https://doi.org/10.1111/omi.12481","url":null,"abstract":"<p><p>Biofilms are subjected to many environmental pressures that can influence community structure and physiology. In the oral cavity, and many other environments, biofilms are exposed to forces generated by fluid flow; however, our understanding of how oral biofilms respond to these forces remains limited. In this study, we developed a linear rocker model of fluid flow to study the impact of shear forces on Streptococcus gordonii and dental plaque-derived multispecies biofilms. We observed that as shear forces increased, S. gordonii biofilm biomass decreased. Reduced biomass was largely independent of overall bacterial growth. Transcriptome analysis of S. gordonii biofilms exposed to moderate levels of shear stress uncovered numerous genes with differential expression under shear. We also evaluated an ex vivo plaque biofilm exposed to fluid shear forces. Like S. gordonii, the plaque biofilm displayed decreased biomass as shear forces increased. Examination of plaque community composition revealed decreased diversity and compositional changes in the plaque biofilm exposed to shear. These studies help to elucidate the impact of fluid shear on oral bacteria and may be extended to other bacterial biofilm systems.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142000344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
One-carbon metabolism and microbial pathogenicity. 单碳代谢与微生物致病性。
IF 2.8 3区 医学
Molecular Oral Microbiology Pub Date : 2024-08-01 Epub Date: 2023-05-24 DOI: 10.1111/omi.12417
Kendall S Stocke, Richard J Lamont
{"title":"One-carbon metabolism and microbial pathogenicity.","authors":"Kendall S Stocke, Richard J Lamont","doi":"10.1111/omi.12417","DOIUrl":"10.1111/omi.12417","url":null,"abstract":"<p><p>One-carbon metabolism (OCM) pathways are responsible for several functions, producing a number of one-carbon unit intermediates (formyl, methylene, methenyl, methyl) that are required for the synthesis of various amino acids and other biomolecules such as purines, thymidylate, redox regulators, and, in most microbes, folate. As humans must acquire folate from the diet, folate production is a target for antimicrobials such as sulfonamides. OCM impacts the regulation of microbial virulence such that in a number of instances, limiting the availability of para-aminobenzoic acid (pABA), an essential OCM precursor, causes a reduction in pathogenicity. Porphyromonas gingivalis, however, displays increased pathogenicity in response to lower pABA levels, and exogenous pABA exerts a calming influence on heterotypic communities of P. gingivalis with pABA-producing partner species. Differential responses to pABA may reflect both the physiology of the organisms and their host microenvironment. OCM plays an integral role in regulating the global rate of protein translation, where the alarmones ZMP and ZTP sense insufficient stores of intracellular folate and coordinate adaptive responses to compensate and restore folate to sufficient levels. The emerging interconnections between OCM, protein synthesis, and context-dependent pathogenicity provide novel insights into the dynamic host-microbe interface.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10667567/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9620985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Histone acetylation, BET proteins, and periodontal inflammation. 组蛋白乙酰化、BET蛋白和牙周炎症。
IF 2.8 3区 医学
Molecular Oral Microbiology Pub Date : 2024-08-01 Epub Date: 2023-10-06 DOI: 10.1111/omi.12438
Nicholas Clayton, David Pellei, Zhao Lin
{"title":"Histone acetylation, BET proteins, and periodontal inflammation.","authors":"Nicholas Clayton, David Pellei, Zhao Lin","doi":"10.1111/omi.12438","DOIUrl":"10.1111/omi.12438","url":null,"abstract":"<p><p>Periodontitis is one of the most common inflammatory diseases in humans. The susceptibility to periodontitis is largely determined by the host response, and the severity of inflammation predicts disease progression. Upon microbial insults, host cells undergo massive changes in their transcription program to trigger an appropriate response (inflammation). It is not surprising that successful keystone pathogens have developed specific mechanisms to manipulate the gene expression network in host cells. Emerging data has indicated that epigenetic regulation plays a significant role in inflammation. Acetylation of lysine residues on histones is a major epigenetic modification of chromatin, highly associated with the accessibility of chromatin and activation of transcription. Specific histone acetylation patterns are observed in inflammatory diseases including periodontitis. Bromo- and extraterminal domain (BET) proteins recognize acetylated histones and then recruit transcription factors and transcription elongation complexes to chromatin. BET proteins are regulated in inflammatory diseases and small molecules blocking the function of BET proteins are promising \"epi-drugs\" for treating inflammatory diseases.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41127436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The potential impact of periodontitis on cerebral small vessel disease. 牙周炎对大脑小血管疾病的潜在影响。
IF 2.8 3区 医学
Molecular Oral Microbiology Pub Date : 2024-08-01 Epub Date: 2023-11-06 DOI: 10.1111/omi.12443
Beatriz Bezerra, Mark Fisher, Flavia Q Pirih, Maísa Casarin
{"title":"The potential impact of periodontitis on cerebral small vessel disease.","authors":"Beatriz Bezerra, Mark Fisher, Flavia Q Pirih, Maísa Casarin","doi":"10.1111/omi.12443","DOIUrl":"10.1111/omi.12443","url":null,"abstract":"<p><p>Cerebral small vessel disease (CSVD) is a term used to describe abnormalities in the intracranial microvasculature affecting small arteries, arterioles, capillaries, and venules. The etiology of these conditions is not fully understood but inflammation appears to play a significant role. Periodontal diseases have been associated with conditions such as stroke and dementia, which are clinical consequences of CSVD. Periodontitis is a highly prevalent chronic multifactorial inflammatory disease regulated by the host immune response against pathogenic bacterial colonization around the teeth. The inflammatory response and the microbial dysbiosis produce pro-inflammatory cytokines that can reach the brain and promote local changes. This review will explore the potential association between periodontitis and CSVD by assessing the impact of periodontitis-induced inflammation and periodontopathogenic bacteria on the underlying mechanisms leading to CSVD. Given the association of periodontitis with stroke and dementia, which are clinical features of CSVD, it may be possible to suggest a link with CSVD. Current evidence linking periodontitis with neuroimaging findings of CSVD enforces the possible link between these conditions.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71483787","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of treatment of rheumatoid arthritis on periodontal disease: A review. 类风湿性关节炎治疗对牙周病的影响:综述。
IF 2.8 3区 医学
Molecular Oral Microbiology Pub Date : 2024-08-01 Epub Date: 2024-02-16 DOI: 10.1111/omi.12454
Catherine Petit, Shauna Culshaw, Roland Weiger, Olivier Huck, Philipp Sahrmann
{"title":"Impact of treatment of rheumatoid arthritis on periodontal disease: A review.","authors":"Catherine Petit, Shauna Culshaw, Roland Weiger, Olivier Huck, Philipp Sahrmann","doi":"10.1111/omi.12454","DOIUrl":"10.1111/omi.12454","url":null,"abstract":"<p><strong>Background: </strong>Numerous studies support a bidirectional association between rheumatoid arthritis (RA), a chronic autoimmune degenerative inflammatory joint disease, and periodontitis, a chronic inflammatory disease caused by the immune reaction to bacteria organized in biofilms. RA and periodontitis are both multifactorial chronic inflammatory diseases that share common modifiable and non-modifiable risk factors. There is no cure for RA; treatment is based on lifestyle modifications and a variety of medications: nonsteroidal anti-inflammatory drugs (NSAID), glucocorticoids, and disease-modifying antirheumatic drugs (DMARDs, e.g., conventional synthetic DMARDs [csDMARDs]; biological DMARDs [bDMARD] and targeted synthetic DMARDs). There are molecular pathways of inflammation that are common to both RA and periodontitis. Thus, there is a potential effect of RA treatments on periodontitis. This systematic review aims to assess the impact of antirheumatic agents on periodontal conditions of patients suffering from both RA and periodontitis.</p><p><strong>Methods: </strong>PubMed/MEDLINE, Cochrane Library, and Embase online databases were systematically explored, and a manual search was performed to identify relevant studies published until January 2023. This review is registered in the PROSPERO database (CRD42023409006).</p><p><strong>Results: </strong>A total of 2827 articles were identified, and 35 fulfilled the inclusion criteria. The included studies generally show a consensus that, at normal dosage, NSAID and corticosteroids have negligible impact on periodontium. Similarly, csDMARD alone or in combination with other csDMARD demonstrated no adverse effect on periodontium. Monotherapy with bDMARD had a positive effect on periodontal pocket depths and gingival inflammation in the longitudinal studies up to 6 months but showed negligible effect on the periodontium in interventional studies with a longer follow-up (9 months and 15.1 months). However, the combination of tumor necrosis factor (TNF)-α inhibitors + methotrexate (MTX) was associated with a rise in gingival inflammation. Due to the considerable heterogeneity of the study designs, a meta-analysis could not reasonably be performed.</p><p><strong>Conclusion: </strong>Within the limitations of the available studies, there is evidence to suggest that bDMARD monotherapy may improve the periodontal condition of RA patients with periodontal disease to a certain extent; the concomitant medication of TNF inhibitor + MTX could worsen gingival inflammation. More data are required to understand the impact of RA therapies on periodontal health.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139741449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dying for a cause: The pathogenic manipulation of cell death and efferocytic pathways. 死因:细胞死亡和泡腾途径的致病性操纵。
IF 2.8 3区 医学
Molecular Oral Microbiology Pub Date : 2024-08-01 Epub Date: 2023-10-02 DOI: 10.1111/omi.12436
Kelley N Cooper, Jan Potempa, Juhi Bagaitkar
{"title":"Dying for a cause: The pathogenic manipulation of cell death and efferocytic pathways.","authors":"Kelley N Cooper, Jan Potempa, Juhi Bagaitkar","doi":"10.1111/omi.12436","DOIUrl":"10.1111/omi.12436","url":null,"abstract":"<p><p>Cell death is a natural consequence of infection. However, although the induction of cell death was solely thought to benefit the pathogen, compelling data now show that the activation of cell death pathways serves as a nuanced antimicrobial strategy that couples pathogen elimination with the generation of inflammatory cytokines and the priming of innate and adaptive cellular immunity. Following cell death, the phagocytic uptake of the infected dead cell by antigen-presenting cells and the subsequent lysosomal fusion of the apoptotic body containing the pathogen serve as an important antimicrobial mechanism that furthers the development of downstream adaptive immune responses. Despite the complexity of regulated cell death pathways, pathogens are highly adept at evading them. Here, we provide an overview of the remarkable diversity of cell death and efferocytic pathways and discuss illustrative examples of virulence strategies employed by pathogens, including oral pathogens, to counter their activation and persist within the host.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10985052/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41117892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信