Shalom D Goldberg, Tero Satomaa, Olulanu Aina, Olli Aitio, Krista Burke, Vadim Dudkin, Brian Geist, Onyi Irrechukwu, Anna-Liisa Hänninen, Annamari Heiskanen, Jari Helin, Jukka O Hiltunen, Jacqueline Kinyamu-Akunda, Donna M Klein, Neeraj Kohli, Titta Kotiranta, Tuula Lähteenmäki, Ritva Niemelä, Virve Pitkänen, Henna Pynnönen, William Rittase, Kristen Wiley, Junguo Zhou, Juhani Saarinen
{"title":"Trastuzumab-MMAU Antibody-Auristatin Conjugates: Valine-Glucoserine Linker with Stabilized Maleimide Conjugation Improves In Vivo Efficacy and Tolerability.","authors":"Shalom D Goldberg, Tero Satomaa, Olulanu Aina, Olli Aitio, Krista Burke, Vadim Dudkin, Brian Geist, Onyi Irrechukwu, Anna-Liisa Hänninen, Annamari Heiskanen, Jari Helin, Jukka O Hiltunen, Jacqueline Kinyamu-Akunda, Donna M Klein, Neeraj Kohli, Titta Kotiranta, Tuula Lähteenmäki, Ritva Niemelä, Virve Pitkänen, Henna Pynnönen, William Rittase, Kristen Wiley, Junguo Zhou, Juhani Saarinen","doi":"10.1158/1535-7163.MCT-23-0591","DOIUrl":"10.1158/1535-7163.MCT-23-0591","url":null,"abstract":"<p><p>Antibody-drug conjugates (ADC) have shown impressive clinical activity with approval of many agents in hematologic and solid tumors. However, challenges remain with both efficacy and safety of ADCs. This study describes novel trastuzumab-auristatin conjugates with the hydrophilic monomethylauristatin E (MMAE) prodrug MMAU, and optimization of a glycopeptide linker leading to a wider therapeutic window. Trastuzumab was conjugated with auristatin payloads via a series of linkers using a stabilized maleimide handle. The ADCs were characterized in vitro and their relative in vivo antitumor efficacies were assessed in HER2+ xenograft models. Relative linker stabilities and the mechanism of linker cleavage were studied using in vitro assays. Toxicity and toxicokinetics of the best performing ADC were evaluated in cynomolgus monkey (cyno). The trastuzumab-MMAU ADC with stabilized glycopeptide linker showed maleimide stabilization and higher resistance to cleavage by serum and lysosomal enzymes compared with a valine-citrulline conjugated trastuzumab ADC (trastuzumab-vc-MMAE). A single dose of 1 or 2 mg/kg of trastuzumab-MMAU at drug-to-antibody ratios (DAR) of eight and four respectively resulted in xenograft tumor growth inhibition, with superior efficacy to trastuzumab-vc-MMAE. Trastuzumab-MMAUDAR4 was tolerated at doses up to 12 mg/kg in cyno, which represents 2- to 4-fold higher dose than that observed with vedotin ADCs, and had increased terminal half-life and exposure. The optimized trastuzumab-MMAU ADC showed potent antitumor activity and was well tolerated with excellent pharmacokinetics in nonhuman primates, leading to a superior preclinical therapeutic window. The data support potential utility of trastuzumab-MMAU for treatment of HER2+ tumors.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":"1530-1543"},"PeriodicalIF":5.3,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139697853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Antonia Charalambous, Fotios Mpekris, Myrofora Panagi, Chrysovalantis Voutouri, Christina Michael, Alberto A Gabizon, Triantafyllos Stylianopoulos
{"title":"Tumor Microenvironment Reprogramming Improves Nanomedicine-Based Chemo-Immunotherapy in Sarcomas.","authors":"Antonia Charalambous, Fotios Mpekris, Myrofora Panagi, Chrysovalantis Voutouri, Christina Michael, Alberto A Gabizon, Triantafyllos Stylianopoulos","doi":"10.1158/1535-7163.MCT-23-0772","DOIUrl":"10.1158/1535-7163.MCT-23-0772","url":null,"abstract":"<p><p>Sarcomas are a heterogeneous group of rare cancers that originate in soft tissues or bones. Their complexity and tendency for metastases make treatment challenging, highlighting the need for new therapeutic approaches to improve patient survival. The difficulties in treating these cancers primarily stem from abnormalities within the tumor microenvironment (TME), which leads to reduced blood flow and oxygen levels in tumors. Consequently, this hampers the effective delivery of drugs to tumors and diminishes treatment efficacy despite higher toxic doses of chemotherapy. In this study, we tested the mechanotherapeutic ketotifen combined with either pegylated liposomal doxorubicin (PLD) or pegylated liposomal coencapsulated alendronate-doxorubicin (PLAD) plus anti-programmed cell death protein 1 antibody in mouse models of fibrosarcoma and osteosarcoma. We found that ketotifen successfully reprogrammed the TME by reducing tumor stiffness and increasing perfusion, proven by changes measured by shear-wave elastography and contrast-enhanced ultrasound, respectively, and enhanced the therapeutic efficacy of our nanomedicine-based chemo-immunotherapy protocols. Furthermore, we observed a trend toward improved antitumor responses when nano-chemotherapy is given alongside anti-programmed cell death protein 1 and when the immunomodulator alendronate was present in the treatment. We next investigated the mechanisms of action of this combination. Ketotifen combined with nanomedicine-based chemo-immunotherapy increased T-cell infiltration, specifically cytotoxic CD8+ T cells and CD4+ T helper cells, and decreased the number of regulatory T cells. In addition, the combination also altered the polarization of tumor-associated macrophages, favoring the M1 immune-supportive phenotype over the M2 immunosuppressive phenotype. Collectively, our findings provide evidence that ketotifen-induced TME reprogramming can improve the efficacy of nanomedicine-based chemo-immunotherapy in sarcomas.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":"1555-1567"},"PeriodicalIF":5.3,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141469558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yoko Furutake, Ken Yamaguchi, Koji Yamanoi, Sachiko Kitamura, Shiro Takamatsu, Mana Taki, Masayo Ukita, Yuko Hosoe, Ryusuke Murakami, Kaoru Abiko, Akihito Horie, Junzo Hamanishi, Tsukasa Baba, Noriomi Matsumura, Masaki Mandai
{"title":"YAP1 Suppression by ZDHHC7 Is Associated with Ferroptosis Resistance and Poor Prognosis in Ovarian Clear Cell Carcinoma.","authors":"Yoko Furutake, Ken Yamaguchi, Koji Yamanoi, Sachiko Kitamura, Shiro Takamatsu, Mana Taki, Masayo Ukita, Yuko Hosoe, Ryusuke Murakami, Kaoru Abiko, Akihito Horie, Junzo Hamanishi, Tsukasa Baba, Noriomi Matsumura, Masaki Mandai","doi":"10.1158/1535-7163.MCT-24-0145","DOIUrl":"10.1158/1535-7163.MCT-24-0145","url":null,"abstract":"<p><p>Ovarian clear cell carcinoma (OCCC), which has unique clinical characteristics, arises from benign endometriotic cysts, forming an oxidative stress environment because of excess iron accumulation, and exhibits poor prognosis, particularly in advanced stages owing to resistance to conventional therapeutics. Ferroptosis is an iron-dependent form of programmed cell death induced by lipid peroxidation and controlled by Hippo signaling. We hypothesized that overcoming ferroptosis resistance is an attractive strategy because OCCC acquires oxidative stress resistance during its development and exhibits chemoresistant features indicative of ferroptosis resistance. This study aimed to determine whether OCCC is resistant to ferroptosis and clarify the mechanism underlying resistance. Unlike ovarian high-grade serous carcinoma cells, OCCC cells were exposed to oxidative stress. However, OCCC cells remained unaffected by lipid peroxidation. Cell viability assays revealed that OCCC cells exhibited resistance to the ferroptosis inducer erastin. Moreover, Samroc analysis showed that the Hippo signaling pathway was enriched in OCCC cell lines and clinical samples. Furthermore, patients with low expression of nuclear yes-associated protein 1 (YAP1) exhibited a significantly poor prognosis of OCCC. Moreover, YAP1 activation enhanced ferroptosis in OCCC cell lines. Furthermore, suppression of zinc finger DHHC-type palmitoyltransferase 7 (ZDHHC7) enhanced ferroptosis by activating YAP1 in OCCC cell lines. Mouse xenograft models demonstrated that ZDHHC7 inhibition suppressed tumor growth via YAP1 activation by erastin treatment. In conclusion, YAP1 activation regulated by ZDHHC7 enhanced ferroptosis in OCCC. Thus, overcoming ferroptosis resistance is a potential therapeutic strategy for OCCC.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":"1652-1665"},"PeriodicalIF":5.3,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141492666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kai Schiemann, Natalya Belousova, Armine Matevossian, Kalyan C Nallaparaju, Giorgio Kradjian, Meghana Pandya, Zhouxiang Chen, Esengul Aral, Eva-Maria Krauel, Elissaveta Petrova, Carsten Boesler, Thomas Kitzing, Marc Lecomte, Christian Wagner, Anne Laure Blayo, Stephan Schann, Bayard Huck, Jacques Moisan, Rinat Zaynagetdinov
{"title":"Dual A2A/A2B Adenosine Receptor Antagonist M1069 Counteracts Immunosuppressive Mechanisms of Adenosine and Reduces Tumor Growth In Vivo.","authors":"Kai Schiemann, Natalya Belousova, Armine Matevossian, Kalyan C Nallaparaju, Giorgio Kradjian, Meghana Pandya, Zhouxiang Chen, Esengul Aral, Eva-Maria Krauel, Elissaveta Petrova, Carsten Boesler, Thomas Kitzing, Marc Lecomte, Christian Wagner, Anne Laure Blayo, Stephan Schann, Bayard Huck, Jacques Moisan, Rinat Zaynagetdinov","doi":"10.1158/1535-7163.MCT-23-0843","DOIUrl":"10.1158/1535-7163.MCT-23-0843","url":null,"abstract":"<p><p>While A2A adenosine receptor (AR) was considered as a major contributor to adenosine-mediated immunosuppression, A2B, having the lowest affinity to adenosine, has also emerged as a potential contributor to tumor promotion. Therefore, in adenosine-rich tumor microenvironment (TME), where A2B could be complementary and/or compensatory to A2A, simultaneous targeting of A2A and A2B ARs can provide higher potential for cancer immunotherapy. We developed M1069-a highly selective dual antagonist of the A2A and A2B AR. In assays with primary human and murine immune cells, M1069 rescued IL2 production from T cells (A2A dependent) and inhibited VEGF production by myeloid cells (A2B dependent) in adenosine-high settings. M1069 also demonstrated superior suppression of the secretion of protumorigenic cytokines CXCL1, CXCL5, and rescue of IL12 secretion from adenosine-differentiated dendritic cells compared to an A2A-selective antagonist (A2Ai). In a one-way mixed lymphocyte reaction (MLR) assay, adenosine-differentiated human and murine dendritic cells treated with M1069 demonstrated superior T-cell stimulatory activity compared to dendritic cells differentiated in presence of A2Ai. In vivo, M1069 decreased tumor growth as a monotherapy and enhanced antitumor activity of bintrafusp alfa (BA) or cisplatin in syngeneic adenosinehi/CD73hi 4T1 breast tumor model, but not in the CD73 knockout 4T1 tumor model or in adenosinelow/CD73low MC38 murine colon carcinoma model. In summary, our dual A2A/A2B AR antagonist M1069 may counteract immune-suppressive mechanisms of high concentrations of adenosine in vitro and in vivo and enhance the antitumor activity of other agents, including BA and cisplatin.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":"1517-1529"},"PeriodicalIF":5.3,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142004819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Foram Dave, Poonam Vaghela, Bryony Heath, Zuzana Dunster, Elena Dubinina, Dhruma Thakker, Katie Mann, Joe Chadwick, Gaëlle Cane, Bubacarr G Kaira, Omar J Mohammed, Ruhul Choudhury, Samantha Paston, Tina Parsons, Mireille Vankemmelbeke, Lindy Durrant
{"title":"SC134-TCB Targeting Fucosyl-GM1, a T Cell-Engaging Antibody with Potent Antitumor Activity in Preclinical Small Cell Lung Cancer Models.","authors":"Foram Dave, Poonam Vaghela, Bryony Heath, Zuzana Dunster, Elena Dubinina, Dhruma Thakker, Katie Mann, Joe Chadwick, Gaëlle Cane, Bubacarr G Kaira, Omar J Mohammed, Ruhul Choudhury, Samantha Paston, Tina Parsons, Mireille Vankemmelbeke, Lindy Durrant","doi":"10.1158/1535-7163.MCT-24-0187","DOIUrl":"10.1158/1535-7163.MCT-24-0187","url":null,"abstract":"<p><p>Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options. Fucosyl-GM1 (FucGM1) is a glycolipid overexpressed in the majority of SCLC tumors but virtually absent from normal healthy tissues. In this study, we validate a FucGM1-targeting T cell-redirecting bispecific (TCB) antibody for the treatment of SCLC. More than 80% of patient-derived xenograft tissues of SCLC expressed FucGM1, whereas only three normal human tissues: pituitary, thymus, and skin expressed low and focal FucGM1. A FucGM1-targeting TCB (SC134-TCB), based on the Fc-silenced humanized SC134 antibody, exhibited nanomolar efficiency in FucGM1 glycolipid and SCLC cell surface binding. SC134-TCB showed potent ex vivo killing of SCLC cell lines with donor-dependent EC50 ranging from 7.2 pmol/L up to 211.0 pmol/L, effectively activating T cells, with picomolar efficiency, coinciding with target-dependent cytokine production such as IFNγ, IL2, and TNFα and robust proliferation of both CD4 and CD8 T cells. The ex vivo SC134-TCB tumor controlling activity translated into an effective in vivo anti-DMS79 tumor therapy, resulting in 100% tumor-free survival in a human peripheral blood mononuclear cell admixed setting and 40% overall survival (55% tumor growth inhibition) with systemically administered human peripheral blood mononuclear cells. Combination treatment with atezolizumab further enhanced survival and tumor growth inhibition (up to 73%). A 10-fold SC134-TCB dose reduction maintained the strong in vivo antitumor impact, translating into 70% overall survival (P < 0.0001). Whole-blood incubation with SC134-TCB, as well as healthy human primary cells analysis, revealed no target-independent cytokine production. SC134-TCB presents an attractive candidate to deliver an effective immunotherapy treatment option for patients with SCLC.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":"1626-1638"},"PeriodicalIF":5.3,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11532774/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142056057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yifan Lv, Yuxuan Deng, Jie Feng, Jinqiu Liu, Mingxu Yang, Zhuonan Pu, Shaodong Zhang, Zhen Wu, Nan Ji, Deric M Park, Shuyu Hao
{"title":"NAD+ Metabolic Enzyme Inhibitor as Radiosensitizer for Malignant Meningioma and its Modulation of P53 Expression.","authors":"Yifan Lv, Yuxuan Deng, Jie Feng, Jinqiu Liu, Mingxu Yang, Zhuonan Pu, Shaodong Zhang, Zhen Wu, Nan Ji, Deric M Park, Shuyu Hao","doi":"10.1158/1535-7163.MCT-23-0632","DOIUrl":"10.1158/1535-7163.MCT-23-0632","url":null,"abstract":"<p><p>Surgical resection followed by radiotherapy (RT) is recommended for malignant meningioma, but poor outcome is unavoidable. To improve the efficacy of RT in malignant meningioma, a targeted radiosensitizer can be added. Nicotinamide phosphoribosyltransferase (NAMPT), highly expressed in high-grade meningiomas, may play a role in determining the radioresponse. Herein, we evaluated the impact of NAMPT inhibition on radiosensitivity in malignant meningioma in vivo and in vitro. IOMM-Lee and TTMM705 cells were treated with NAMPT inhibition (FK866 or shRNA NAMPT) before irradiation. The subsequent clonogenic assay demonstrated significantly increased radiosensitivity. Combination treatment with FK866 and irradiation significantly increased the number of G2/M-phase cells, percentage of apoptotic cells, and γ-H2A.X level compared with FK866 or RT alone. We examined the effect of NAMPT inhibition on NMI and p53 expression in IOMM-Lee and TTMM705 cells. NAMPT inhibition by FK866 and shRNA treatment increased NMI, p53, CDKN1A and BAX expression. Additionally, we assessed the efficacy of FK866/RT combination treatment in vivo. The combination treatment exhibited increased antitumor efficacy compared with either treatment alone. The Ki67 level was significantly lower, and the p53 and γ-H2A.X levels were significantly higher in the combination treatment group than in the other three groups. In conclusion, these results indicate that FK866 improves radiosensitivity in malignant meningioma, an effect that may be attributed to the increase in p53 expression.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":"1586-1596"},"PeriodicalIF":5.3,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141748632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Emerging Tumor-Agnostic Molecular Targets.","authors":"Dedipya Bhamidipati, Alison M Schram","doi":"10.1158/1535-7163.MCT-23-0725","DOIUrl":"10.1158/1535-7163.MCT-23-0725","url":null,"abstract":"<p><p>Advances in tumor molecular profiling have uncovered shared genomic and proteomic alterations across tumor types that can be exploited therapeutically. A biomarker-driven, disease-agnostic approach to oncology drug development can maximize the reach of novel therapeutics. To date, eight drug-biomarker pairs have been approved for the treatment of patients with advanced solid tumors with specific molecular profiles. Emerging biomarkers with the potential for clinical actionability across tumor types include gene fusions involving NRG1, FGFR1/2/3, BRAF, and ALK and mutations in TP53 Y220C, KRAS G12C, FGFR2/3, and BRAF non-V600 (class II). We explore the growing evidence for clinical actionability of these biomarkers in patients with advanced solid tumors.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":"1544-1554"},"PeriodicalIF":5.3,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142291433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ailed M Cruz-Collazo, Olga Katsara, Nilmary Grafals-Ruiz, Jessica Colon Gonzalez, Stephanie Dorta-Estremera, Victor P Carlo, Nataliya Chorna, Robert J Schneider, Suranganie Dharmawardhane
{"title":"Novel Inhibition of Central Carbon Metabolism Pathways by Rac and CDC42 inhibitor MBQ167 and Paclitaxel.","authors":"Ailed M Cruz-Collazo, Olga Katsara, Nilmary Grafals-Ruiz, Jessica Colon Gonzalez, Stephanie Dorta-Estremera, Victor P Carlo, Nataliya Chorna, Robert J Schneider, Suranganie Dharmawardhane","doi":"10.1158/1535-7163.MCT-23-0803","DOIUrl":"10.1158/1535-7163.MCT-23-0803","url":null,"abstract":"<p><p>Triple negative breast cancer (TNBC) represents a therapeutic challenge in which standard chemotherapy is limited to paclitaxel. MBQ167, a clinical stage small molecule inhibitor that targets Rac and Cdc42, inhibits tumor growth and metastasis in mouse models of TNBC. Herein, we investigated the efficacy of MBQ167 in combination with paclitaxel in TNBC preclinical models, as a prelude to safety trials of this combination in patients with advanced breast cancer. Individual MBQ167 or combination therapy with paclitaxel was more effective at reducing TNBC cell viability and increasing apoptosis compared with paclitaxel alone. In orthotopic mouse models of human TNBC (MDA-MB231 and MDA-MB468), individual MBQ167, paclitaxel, or the combination reduced mammary tumor growth with similar efficacy, with no apparent liver toxicity. However, paclitaxel single agent treatment significantly increased lung metastasis, whereas MBQ167, single or combined, reduced lung metastasis. In the syngeneic 4T1/BALB/c model, combined MBQ167 and paclitaxel decreased established lung metastases by ∼80%. To determine the molecular basis for the improved efficacy of the combined treatment on metastasis, 4T1 tumor extracts from BALB/c mice treated with MBQ167, paclitaxel, or the combination were subjected to transcriptomic analysis. Gene set enrichment identified specific downregulation of central carbon metabolic pathways by the combination of MBQ167 and paclitaxel but not individual compounds. Biochemical validation, by immunoblotting and metabolic Seahorse analysis, shows that combined MBQ167 and paclitaxel reduces glycolysis. This study provides a strong rationale for the clinical testing of MBQ167 in combination with paclitaxel as a potential therapeutic for TNBC and identifies a unique mechanism of action.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":"1613-1625"},"PeriodicalIF":5.3,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11534544/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141860322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A DXd/TLR7-Agonist Dual-Conjugate Anti-HER2 ADC Exerts Robust Antitumor Activity Through Tumor Cell Killing and Immune Activation.","authors":"Hangtian Yue, Hui Xu, Lanping Ma, Xiyuan Li, Biyu Yang, Xiyuan Wang, Qingzhong Zeng, Han Li, Deqiang Zhang, Meiyu Geng, Tao Meng, Zuoquan Xie","doi":"10.1158/1535-7163.MCT-24-0078","DOIUrl":"10.1158/1535-7163.MCT-24-0078","url":null,"abstract":"<p><p>The emergence of trastuzumab deruxtecan (T-DXd), a new-generation antibody-drug conjugate (ADC), has profoundly altered the therapeutic paradigm for HER2-positive solid tumors, demonstrating remarkable clinical benefits. However, the combined outcomes of T-DXd with immunotherapy agents remain ambiguous. In this study, we introduce Tras-DXd-MTL1, an innovative HER2 targeting ADC that integrates the topoisomerase inhibitor DXd and a toll like receptor 7 (TLR7) agonist MTT5, linked to trastuzumab via a GGFG tetrapeptide linker. Mechanistically, Tras-DXd-MTL1 retains the DNA-damaging and cell-killing properties of topoisomerase inhibitors while simultaneously enhancing the immune response within the tumor microenvironment. This is achieved by promoting immune cell infiltration and activating dendritic cells and CD8+T cells via MTT5. In vivo evaluation of Tras-DXd-MTL1's antitumor potency revealed a notably superior performance compared with the T-DXd (Tras-DXd) or Tras-MTL1 in immunocompetent mice with trastuzumab-resistant EMT6-HER2 tumor and immunodeficient mice with JIMT-1 tumor. This improved efficacy is primarily attributed to its dual functions of immune stimulation and cytotoxicity. Our findings highlight the potential of incorporating immunostimulatory agents into ADC design to potentiate antitumor effects and establish durable immune memory, thereby reducing tumor recurrence risks. Therefore, our study offers a novel strategy for the design of immune-activating ADCs and provides a potential approach for targeting solid tumors with different levels of HER2 expression.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":"1639-1651"},"PeriodicalIF":5.3,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141856024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}