Targeting SUMOylation triggers interferon-ß-dependent activation of patient and allogenic Natural Killer cells in preclinical models of Acute Myeloid Leukemia.
Rawan Hallal, Marion de Toledo, Denis Tempé, Rayane Berrahouane, Sara Zemiti, Loïs Coënon, Delphine Gitenay, Simon George, Moritz Schüssler, Nadine Laguette, Sarah Bonnet, Ludovic Gabellier, Guillaume Cartron, Mireia Pelegrin, Martin Villalba, Guillaume Bossis
{"title":"Targeting SUMOylation triggers interferon-ß-dependent activation of patient and allogenic Natural Killer cells in preclinical models of Acute Myeloid Leukemia.","authors":"Rawan Hallal, Marion de Toledo, Denis Tempé, Rayane Berrahouane, Sara Zemiti, Loïs Coënon, Delphine Gitenay, Simon George, Moritz Schüssler, Nadine Laguette, Sarah Bonnet, Ludovic Gabellier, Guillaume Cartron, Mireia Pelegrin, Martin Villalba, Guillaume Bossis","doi":"10.1158/1535-7163.MCT-25-0504","DOIUrl":null,"url":null,"abstract":"<p><p>Natural Killer (NK) cells can play a significant role in the anti-tumoral immune response. In patients with Acute Myeloid Leukemia (AML), NK cells are however often found in low numbers and exhibit poor activity, contributing to leukemic progression. Allogenic NK cells are emerging as promising cellular therapies for hematological cancer treatment. New strategies are however required to both reactivate NK cells in AML patients and enhance the anti-tumor activity of transplanted NK cells. Here, we demonstrate that targeting SUMOylation, a protein post-translational modification, activates NK cells from both healthy donors and AML patients. Subasumstat (TAK-981), a first-in-class inhibitor of SUMOylation used in phase I/II clinical trials, enhances NK cells degranulation, secretion of inflammatory cytokines (IFN-γ, TNF-α, FasL) and cytotoxicity against AML cells. In vivo, TAK-981 improves the anti-leukemic efficacy of ex-vivo expanded cord-blood NK cells in leukemia-bearing mice. One early effect of TAK-981 is to specifically increase the accessibility and activation of cis-regulatory regions of type I interferon (IFN-I) pathway genes and induce their transcription. TAK-981-induced secretion of interferon-ß, mostly by NK cells and myeloid cells, is required for NK cells activation. Surprisingly, IFNB1 induction does not require its best-characterized activators MDA5, cGas, IRF-1, -3 and -7. Altogether, this suggests that targeting SUMOylation activates a non-canonical IFN-I pathway, which enhances the anti-leukemic potential of NK cells.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cancer Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/1535-7163.MCT-25-0504","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Natural Killer (NK) cells can play a significant role in the anti-tumoral immune response. In patients with Acute Myeloid Leukemia (AML), NK cells are however often found in low numbers and exhibit poor activity, contributing to leukemic progression. Allogenic NK cells are emerging as promising cellular therapies for hematological cancer treatment. New strategies are however required to both reactivate NK cells in AML patients and enhance the anti-tumor activity of transplanted NK cells. Here, we demonstrate that targeting SUMOylation, a protein post-translational modification, activates NK cells from both healthy donors and AML patients. Subasumstat (TAK-981), a first-in-class inhibitor of SUMOylation used in phase I/II clinical trials, enhances NK cells degranulation, secretion of inflammatory cytokines (IFN-γ, TNF-α, FasL) and cytotoxicity against AML cells. In vivo, TAK-981 improves the anti-leukemic efficacy of ex-vivo expanded cord-blood NK cells in leukemia-bearing mice. One early effect of TAK-981 is to specifically increase the accessibility and activation of cis-regulatory regions of type I interferon (IFN-I) pathway genes and induce their transcription. TAK-981-induced secretion of interferon-ß, mostly by NK cells and myeloid cells, is required for NK cells activation. Surprisingly, IFNB1 induction does not require its best-characterized activators MDA5, cGas, IRF-1, -3 and -7. Altogether, this suggests that targeting SUMOylation activates a non-canonical IFN-I pathway, which enhances the anti-leukemic potential of NK cells.
期刊介绍:
Molecular Cancer Therapeutics will focus on basic research that has implications for cancer therapeutics in the following areas: Experimental Cancer Therapeutics, Identification of Molecular Targets, Targets for Chemoprevention, New Models, Cancer Chemistry and Drug Discovery, Molecular and Cellular Pharmacology, Molecular Classification of Tumors, and Bioinformatics and Computational Molecular Biology. The journal provides a publication forum for these emerging disciplines that is focused specifically on cancer research. Papers are stringently reviewed and only those that report results of novel, timely, and significant research and meet high standards of scientific merit will be accepted for publication.