Development and Application of Radioactive Ligands Targeting Fibroblasts with Albumin-Binding Sites.

IF 5.3 2区 医学 Q1 ONCOLOGY
Tongtong Wu, Zhicong Yang, Sufan Tang, Hongmei Yuan, Yang Liu, Haiyang Li, Nan Liu, Zhanwen Huang, Yue Chen, Zhijun Zhou
{"title":"Development and Application of Radioactive Ligands Targeting Fibroblasts with Albumin-Binding Sites.","authors":"Tongtong Wu, Zhicong Yang, Sufan Tang, Hongmei Yuan, Yang Liu, Haiyang Li, Nan Liu, Zhanwen Huang, Yue Chen, Zhijun Zhou","doi":"10.1158/1535-7163.MCT-24-1108","DOIUrl":null,"url":null,"abstract":"<p><p>Fibroblast activation protein (FAP) is overexpressed on cancer-related fibroblasts (CAFs), making it an important target for cancer diagnosis and treatment, but limited tumor retention hinders late-stage diagnosis and radionuclide therapy. In this study, three albumin-bound FAPI radioligands, 68Ga/177Lu-DOTA-ALB-01, 68Ga/177Lu-DOTA-ALB-02, and 68Ga/177Lu-DOTA-ALB-03, were synthesized and evaluated for their in vitro stability, binding affinity, in vivo biodistribution, and tumor uptake using 68Ga and 177Lu labeling. All radioligands are stable in saline and plasma and exhibit high FAP binding affinity. 177Lu-DOTA-ALB-02 has longer retention in circulation than 177Lu-FAPI-46 and other radioligands. Continuous tumor accumulation was observed during imaging with both 177Lu-DOTA-ALB-01 and 177Lu-DOTA-ALB-02. Notably, 177Lu-DOTA-ALB-02 had a significant tumor/ nontarget (T/NT) ratio as indicated by biodistribution data. The outstanding tumor retention properties of 177Lu-DOTA-ALB-02 have been demonstrated in small animal single photon emission computed tomography (micro-SPECT) imaging and biodistribution studies, therefore it is considered the albumin-binding FAPI with the most favorable pharmacokinetic and imaging properties, worthy of further clinical investigation.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cancer Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/1535-7163.MCT-24-1108","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Fibroblast activation protein (FAP) is overexpressed on cancer-related fibroblasts (CAFs), making it an important target for cancer diagnosis and treatment, but limited tumor retention hinders late-stage diagnosis and radionuclide therapy. In this study, three albumin-bound FAPI radioligands, 68Ga/177Lu-DOTA-ALB-01, 68Ga/177Lu-DOTA-ALB-02, and 68Ga/177Lu-DOTA-ALB-03, were synthesized and evaluated for their in vitro stability, binding affinity, in vivo biodistribution, and tumor uptake using 68Ga and 177Lu labeling. All radioligands are stable in saline and plasma and exhibit high FAP binding affinity. 177Lu-DOTA-ALB-02 has longer retention in circulation than 177Lu-FAPI-46 and other radioligands. Continuous tumor accumulation was observed during imaging with both 177Lu-DOTA-ALB-01 and 177Lu-DOTA-ALB-02. Notably, 177Lu-DOTA-ALB-02 had a significant tumor/ nontarget (T/NT) ratio as indicated by biodistribution data. The outstanding tumor retention properties of 177Lu-DOTA-ALB-02 have been demonstrated in small animal single photon emission computed tomography (micro-SPECT) imaging and biodistribution studies, therefore it is considered the albumin-binding FAPI with the most favorable pharmacokinetic and imaging properties, worthy of further clinical investigation.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.20
自引率
1.80%
发文量
331
审稿时长
3 months
期刊介绍: Molecular Cancer Therapeutics will focus on basic research that has implications for cancer therapeutics in the following areas: Experimental Cancer Therapeutics, Identification of Molecular Targets, Targets for Chemoprevention, New Models, Cancer Chemistry and Drug Discovery, Molecular and Cellular Pharmacology, Molecular Classification of Tumors, and Bioinformatics and Computational Molecular Biology. The journal provides a publication forum for these emerging disciplines that is focused specifically on cancer research. Papers are stringently reviewed and only those that report results of novel, timely, and significant research and meet high standards of scientific merit will be accepted for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信