Itishree Kaushik, Robin Rajan, Shreyas Gaikwad, Mohamed A Eltokhy, Sanjay K Srivastava
{"title":"Moxidectin Unravels the Role of the Hippo-YAP Pathway in Maintaining Immunity of Glioblastoma Multiforme.","authors":"Itishree Kaushik, Robin Rajan, Shreyas Gaikwad, Mohamed A Eltokhy, Sanjay K Srivastava","doi":"10.1158/1535-7163.MCT-24-0594","DOIUrl":null,"url":null,"abstract":"<p><p>Glioblastoma multiforme (GBM) is a lethal and aggressive cancer with an extremely poor prognosis. Recent preclinical, clinical, and genomic studies have highlighted the role of the Hippo-Yap pathway in the progression of GBM. In addition, it has been identified that YAP plays a major role in creating an immunosuppressive tumor microenvironment, facilitating drug resistance, recurrence, and metastasis of GBM tumors. In this study, we report that \"moxidectin\", an antihelminthic drug, inhibits the proliferation of SF268, SF295, SF188, and CT-2A-Luc GBM cells by inducing apoptosis. Immunoblotting and immunofluorescence data show that moxidectin mediates its effects by inhibiting the MEK-ERK pathway, a regulator of Hippo-YAP signaling. Inhibition of MEK-ERK by moxidectin ultimately led to blockade of the nuclear translocation and transcriptional activity of the YAP/TAZ-TEAD complex in various GBM cells. Oral administration of 3.5 mg/kg moxidectin suppressed the growth of GBM tumors by 90% in an intracranial tumor model. Ex vivo analysis of excised tumors confirmed the observations made in in vitro studies. Interestingly, moxidectin enhanced antigen presentation in the tumor-draining lymph nodes and reduced the pro-tumorigenic macrophage population in the brain, indicating that it might play a role in modulating the immune response. Chronic moxidectin treatment did not cause any toxicity in mice based on our toxicologic evaluation. Moxidectin is an FDA-approved drug, and findings from our study will promote its clinical investigation as a potential therapeutic agent for patients with GBM.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":"1156-1170"},"PeriodicalIF":5.5000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cancer Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/1535-7163.MCT-24-0594","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Glioblastoma multiforme (GBM) is a lethal and aggressive cancer with an extremely poor prognosis. Recent preclinical, clinical, and genomic studies have highlighted the role of the Hippo-Yap pathway in the progression of GBM. In addition, it has been identified that YAP plays a major role in creating an immunosuppressive tumor microenvironment, facilitating drug resistance, recurrence, and metastasis of GBM tumors. In this study, we report that "moxidectin", an antihelminthic drug, inhibits the proliferation of SF268, SF295, SF188, and CT-2A-Luc GBM cells by inducing apoptosis. Immunoblotting and immunofluorescence data show that moxidectin mediates its effects by inhibiting the MEK-ERK pathway, a regulator of Hippo-YAP signaling. Inhibition of MEK-ERK by moxidectin ultimately led to blockade of the nuclear translocation and transcriptional activity of the YAP/TAZ-TEAD complex in various GBM cells. Oral administration of 3.5 mg/kg moxidectin suppressed the growth of GBM tumors by 90% in an intracranial tumor model. Ex vivo analysis of excised tumors confirmed the observations made in in vitro studies. Interestingly, moxidectin enhanced antigen presentation in the tumor-draining lymph nodes and reduced the pro-tumorigenic macrophage population in the brain, indicating that it might play a role in modulating the immune response. Chronic moxidectin treatment did not cause any toxicity in mice based on our toxicologic evaluation. Moxidectin is an FDA-approved drug, and findings from our study will promote its clinical investigation as a potential therapeutic agent for patients with GBM.
期刊介绍:
Molecular Cancer Therapeutics will focus on basic research that has implications for cancer therapeutics in the following areas: Experimental Cancer Therapeutics, Identification of Molecular Targets, Targets for Chemoprevention, New Models, Cancer Chemistry and Drug Discovery, Molecular and Cellular Pharmacology, Molecular Classification of Tumors, and Bioinformatics and Computational Molecular Biology. The journal provides a publication forum for these emerging disciplines that is focused specifically on cancer research. Papers are stringently reviewed and only those that report results of novel, timely, and significant research and meet high standards of scientific merit will be accepted for publication.