{"title":"Inside-out integrin activation is essential for early mammalian development.","authors":"Bhavya Venkatesh, Angelica Phelan, Guy Tanentzapf","doi":"10.1091/mbc.E25-03-0106","DOIUrl":"10.1091/mbc.E25-03-0106","url":null,"abstract":"<p><p>The attachment of cells to the extracellular matrix (ECM) is essential for morphogenesis. The activity of Integrins, the main mediators of cell-ECM adhesion in animals, is required for morphogenesis and must be precisely regulated to ensure proper development. However, the mechanisms that ensure precise integrin activity during animal development are poorly understood. The best characterized mechanism for integrin regulation is conformational change driven by either extracellular signals (\"outside-in activation\") or by intracellular signals (\"inside-out activation\"). The cytoplasmic protein talin is a key regulator of inside-out activation. We used mutations in talin to demonstrate, for the first time, that modulation of integrin activation is essential for early mammalian development. We find that integrin activation mutants die by E8.5-E9.5 and show developmental delay and abnormal growth. Intriguingly, disrupting integrin regulation does not impinge on embryonic patterning and ECM distribution. Analysis of embryonic stem cells isolated from integrin activation mutants revealed a reduction in the strength of cell-ECM attachment but only mild defects in focal adhesion number and maturation. Notably, activation mutants at E7.5 showed increased cell death and reduced cell-proliferation Overall, we find that inside-out integrin activation strengthens cell-ECM attachment in early mouse development that is essential for cell survival and proliferation.</p>","PeriodicalId":18735,"journal":{"name":"Molecular Biology of the Cell","volume":" ","pages":"ar134"},"PeriodicalIF":2.7,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144992951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
James B Hayes, Anna M Bainbridge, Alaina H Willet, Dylan T Burnette
{"title":"Alpha-actinin-1 promotes adhesion maturation and facilitates sarcomere assembly in cardiac myocytes.","authors":"James B Hayes, Anna M Bainbridge, Alaina H Willet, Dylan T Burnette","doi":"10.1091/mbc.E25-03-0145","DOIUrl":"10.1091/mbc.E25-03-0145","url":null,"abstract":"<p><p>Cardiac sarcomere assembly is a highly orchestrated process requiring integration between intracellular contractile machinery and extracellular adhesions. While α-actinin-2 (ACTN2) is well known for its structural role at the cardiac Z-disc, the sarcomere border, the function of the \"non-muscle\" paralog α-actinin-1 (ACTN1) in cardiac myocytes remains unclear. Using human induced pluripotent stem cell-derived cardiac myocytes (hiCMs), we demonstrate that siRNA-mediated depletion of ACTN1 disrupts sarcomere assembly, and that exogenous re-introduction of ACTN1 but not ACTN2 restores assembly, revealing non-redundant functions. Unlike ACTN2, ACTN1 localized predominantly to cardiac myocyte focal adhesions, and was required for adhesion enlargement during sarcomere assembly, suggesting ACTN1 but not ACTN2 is required for adhesion maturation. Live-cell imaging of vinculin dynamics showed decreased stability of adhesion-associated vinculin in ACTN1-deficient cells, whereas paxillin dynamics were unaffected. These results suggest that ACTN1 stabilizes focal adhesions to promote effective force transmission during sarcomere assembly.</p>","PeriodicalId":18735,"journal":{"name":"Molecular Biology of the Cell","volume":" ","pages":"br27"},"PeriodicalIF":2.7,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145033741","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Philipp Girke, Simone Fabian, Leonie Aberle, Wolfgang Seufert
{"title":"The spatial arrangement of chromosomes determines fusion of nucleoli in diploid budding yeast.","authors":"Philipp Girke, Simone Fabian, Leonie Aberle, Wolfgang Seufert","doi":"10.1091/mbc.E25-08-0375","DOIUrl":"10.1091/mbc.E25-08-0375","url":null,"abstract":"<p><p>The nucleolus is a nonmembrane-bound compartment that forms around tandem arrays of ribosomal RNA genes and provides the cell with ribosomes. Multiple nucleoli within the same nucleus coalesce, and fusion is thought to result mainly from intrinsic properties of nucleoli. However, ribosomal DNA (rDNA) arrays are mostly in chromosomal context, and chromosomes are not randomly organized. How the spatial arrangement of chromosomes affects nucleolar fusion is largely unknown. Using fluorescence microscopy, we investigated nucleolar fusion in diploid budding yeast. Nucleoli forming around homologous rDNA arrays efficiently fused during interphase but often individualized during late anaphase. Although nucleoli were far from the spindle pole body (SPB) in interphase, they came close during mitosis, suggesting that SPB-dependent positioning may affect nucleolar fusion. Indeed, disruption of microtubule-dependent centromere anchorage to the SPB by nocodazole promoted individualization of nucleoli. In contrast, impairment of rDNA tethering to the nuclear envelope had little or no effect. Hence, chromosome positioning by non-rDNA sequences facilitates nucleolar fusion.</p>","PeriodicalId":18735,"journal":{"name":"Molecular Biology of the Cell","volume":" ","pages":"br29"},"PeriodicalIF":2.7,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145081241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Sex does not influence neuronal autophagosome biogenesis throughout aging in mice.","authors":"Mya N Rodriguez, Andrea K H Stavoe","doi":"10.1091/mbc.E25-07-0312","DOIUrl":"10.1091/mbc.E25-07-0312","url":null,"abstract":"<p><p>Autophagy is critical for the homeostasis and function of neurons, as misregulation of autophagy has been implicated in age-related neurodegenerative diseases, and neuron-specific knockdown of early autophagy genes results in early neurodegeneration in mice. We previously found that autophagosome formation decreases with age in murine neurons. Sex differences have been intensely studied in neurodegenerative diseases, but whether sex differences influence autophagy at the neuronal level has not been investigated. We compared protein expression of 22 autophagy components between neural tissues of female and male mice across development and aging. We found minimal sex-related differences in autophagy protein expression throughout the murine lifespan. Additionally, we assayed the recruitment of autophagy complexes and autophagosome biogenesis; we found no sex-dependent differences in multiple stages of autophagosome formation in neurons, independent of age. Our data suggest that biological sex does not influence autophagosome formation in neurons across development and aging.</p>","PeriodicalId":18735,"journal":{"name":"Molecular Biology of the Cell","volume":" ","pages":"ar135"},"PeriodicalIF":2.7,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145033795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Laura Listenberger, Elizabeth A Strandberg, Byunghyun Ahn, Vivienne Vinton, Gillian Bode, Abigail Williams, Hayden Reid, Lia Wallace, Daaé Ransom, Kim Kandl
{"title":"Fatty acid trafficking to mitochondria and peroxisomes in <i>Tetrahymena thermophila</i>, a new frontier for lipid droplet biology.","authors":"Laura Listenberger, Elizabeth A Strandberg, Byunghyun Ahn, Vivienne Vinton, Gillian Bode, Abigail Williams, Hayden Reid, Lia Wallace, Daaé Ransom, Kim Kandl","doi":"10.1091/mbc.E24-08-0381","DOIUrl":"10.1091/mbc.E24-08-0381","url":null,"abstract":"<p><p>Lipid droplets are increasingly recognized as necessary organelles. However, the cellular pathways that regulate lipid droplets have only been defined in select fungi, algae, plants, and animals. Our experiments expand the study of lipid droplets to an evolutionarily distinct model organism, the ciliate <i>Tetrahymena thermophila</i>. We identify conserved pathways that promote lipid droplet homeostasis while also uncovering features that suggest adaptation. We show that <i>Tetrahymena</i> accumulate lipid droplets in response to nutrient deprivation, including starvation and the stationary phase. Pulse-chase experiments with a fluorescent fatty acid analogue demonstrate lipid trafficking to lipid droplets in starved cultures. Unlike other cell types, starved <i>Tetrahymena</i> appear to use both peroxisomes and mitochondria (not vacuoles) for further fatty acid catabolism. We observe cooccurence of the fluorescent fatty acid analogue with markers of peroxisomes and a subpopulation of mitochondria, suggesting specialized catabolic roles for both organelles. We demonstrate a decrease in survival following starvation in the presence of inhibitors of mitochondrial fatty acid import or peroxisomal fatty acid metabolism. Together, our experiments add <i>Tetrahymena</i> to the expanding list of eukaryotes that increase lipid droplets in response to nutrient depletion while also uncovering important and distinct roles for mitochondrial and peroxisomal catabolism in survival pathways.</p>","PeriodicalId":18735,"journal":{"name":"Molecular Biology of the Cell","volume":" ","pages":"br28"},"PeriodicalIF":2.7,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145081148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Reito Watanabe, Carlos Perea-Resa, Michael D Blower
{"title":"Robust CENP-A incorporation in human cells is independent of transcription and cohesin components.","authors":"Reito Watanabe, Carlos Perea-Resa, Michael D Blower","doi":"10.1091/mbc.E25-05-0214","DOIUrl":"10.1091/mbc.E25-05-0214","url":null,"abstract":"<p><p>Centromeres are essential chromosomal components that ensure proper cell division by serving as assembly sites for kinetochores, which connect chromosomes to spindle microtubules. Centromeres are marked by the evolutionarily conserved centromere-specific histone H3 variant, CENP-A, which is deposited into centromere nucleosomes during G<sub>1</sub> in human cells. Centromeres retain cohesin, a ring-like protein complex, during mitosis, protecting sister chromatid cohesion and centromere transcription to prevent chromosome missegregation. Previous work in <i>Drosophila</i> has suggested that centromere transcription and centromeric RNAs are important for CENP-A deposition in chromatin. During mitosis, centromeric cohesin is critical for centromere transcription. However, it is not clear how or whether centromeric transcription and cohesin contribute to CENP-A deposition in G<sub>1</sub> in human cells. To address these questions, we combined a cell synchronization strategy with the Auxin Inducible Degron technology and transcription inhibition in human cells. In contrast with <i>Drosophila</i> cells, our results demonstrated that neither centromeric transcription nor cohesin is required for CENP-A deposition in human cells. Our data demonstrate clear differences in the CENP-A deposition mechanism between human and <i>Drosophila</i> cells. These findings provide deeper insights into the plasticity underlying centromere maintenance and highlight evolutionary divergence in centromere maintenance systems across species.</p>","PeriodicalId":18735,"journal":{"name":"Molecular Biology of the Cell","volume":" ","pages":"br30"},"PeriodicalIF":2.7,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145081157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
John B Linehan, Alexandra Zampetaki, Michael E Werner, Bryan Heck, Paul S Maddox, Sebastian Fürthauer, Amy S Maddox
{"title":"Three types of actomyosin rings within a common cytoplasm exhibit distinct modes of contractility.","authors":"John B Linehan, Alexandra Zampetaki, Michael E Werner, Bryan Heck, Paul S Maddox, Sebastian Fürthauer, Amy S Maddox","doi":"10.1091/mbc.E24-08-0373","DOIUrl":"10.1091/mbc.E24-08-0373","url":null,"abstract":"<p><p>Actomyosin rings are specializations of the nonmuscle actomyosin cytoskeleton that drive cell shape changes during division, wound healing, and other events. Contractile rings throughout phylogeny and in a range of cellular contexts are built from conserved components, including nonmuscle myosin II, actin filaments, and cross-linking proteins. To explore whether diverse actomyosin rings generate contractile force and close via a common mechanism, we studied three instances of ring closure within the continuous cytoplasm of the <i>Caenorhabditis elegans</i> syncytial oogenic germline: mitotic cytokinesis of germline stem cells, apoptosis of meiotic compartments, and cellularization of oocytes. The three ring types exhibited distinct closure kinetics and component protein abundance dynamics. We formulated a physical model to relate measured closure speed and molecular composition dynamics to ring active stress and viscosity. We conclude that these ring intrinsic factors vary among the ring types. Our model suggests that motor and nonmotor cross-linkers' abundance and distribution along filaments are important to recapitulate observed closure dynamics. Thus, our findings suggest that across ring closure contexts, fundamental contractile mechanics are conserved, and the magnitude of contractile force is tuned via regulation of ring component abundance and distribution. These results motivate testable hypotheses about cytoskeletal regulation, architecture, and remodeling.</p>","PeriodicalId":18735,"journal":{"name":"Molecular Biology of the Cell","volume":" ","pages":"ar136"},"PeriodicalIF":2.7,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145081178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bethan A Wallbank, Eleanor J Smith, Jennifer E Dumaine Carrasco, Rui Xiao, Katelyn A Walzer, Jaclyn R Riley, Boris Striepen
{"title":"<i>Cryptosporidium</i> aspartyl protease 2 is required for host cell egress of merozoites and male gametes.","authors":"Bethan A Wallbank, Eleanor J Smith, Jennifer E Dumaine Carrasco, Rui Xiao, Katelyn A Walzer, Jaclyn R Riley, Boris Striepen","doi":"10.1091/mbc.E25-06-0306","DOIUrl":"10.1091/mbc.E25-06-0306","url":null,"abstract":"<p><p>The parasite <i>Cryptosporidium</i> causes severe diarrheal disease that can be life-threatening, and effective treatments are sorely lacking. Recently, aspartyl proteases (ASP) have emerged as targets with significant therapeutic potential in several related parasites, resulting in the development of multiple potent leads. ASPs are critical to the proteolytic activation and maturation of secretory proteins that parasites rely on to invade, manipulate, and upon completion of their replication cycle, exit the host cells in which they reside. The <i>Cryptosporidium</i> genome encodes five ASPs, which have not been previously studied. Here, we explore two of these enzymes and in genetic experiments find one, CpASP2, to be essential to parasite growth. Conditional deletion of the gene encoding this protease leads to arrest at two distinct points in the lifecycle. Cell biological studies of the mutant phenotype demonstrate that CpASP2 is required for egress of both asexual merozoites and male gametes. Mutant parasites appear to complete intracellular development yet are paralyzed and incapable of responding to stimuli that trigger motility and egress in wild-type. Ablation of CpASP2 in infected mice leads to rapid parasite clearance, highlighting the promise of CpASP2 and likely additional related enzymes as multistage targets of therapy.</p>","PeriodicalId":18735,"journal":{"name":"Molecular Biology of the Cell","volume":" ","pages":"ar133"},"PeriodicalIF":2.7,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144992967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Induction of postmeiotic DNA double-strand breaks by the Pnu1 endonuclease in <i>Schizosaccharomyces pombe</i>.","authors":"Loïs Mourrain, Tiphanie Cavé, Guylain Boissonneault","doi":"10.1091/mbc.E25-05-0246","DOIUrl":"10.1091/mbc.E25-05-0246","url":null,"abstract":"<p><p>Meiosis is a source of genetic variation in eukaryotes. Meiosis in the eukaryotic fission yeast <i>Schizosaccharomyces pombe</i> leads to the formation of spores that are particularly resistant to environmental stresses. In addition to external factors, internal processes may nevertheless contribute to cellular stress and impact the genome. This study investigates the role of Pnu1 as the major meiotic nuclease in <i>S. pombe</i>. Transcription and cellular expression of Pnu1 are regulated upon specific phases of meiosis, while its mitochondrial localization is also altered during this process. As a result, Pnu1 induces fragmentation of both genomic and mitochondrial DNA in the postmeiotic phase. This sugar-nonspecific endonuclease generates random double-strand breaks across the genome, an activity that appears to be mediated by direct interaction with chromatin. Given the high spore viability (∼95%) and the widespread occurrence of this phenomenon, this fragmentation appears to be physiological rather than apoptotic as observed in mammals. EndoG is the mammalian homologue of Pnu1 and is a caspase-independent apoptotic endonuclease that can allow cell survival. This study further describes the dynamics of Pnu1 action and supports the conclusion that Pnu1 is a major meiotic endonuclease of <i>S. pombe</i> responsible for a transient postmeiotic fragmentation of cellular DNA, potentially contributing to genetic variability.</p>","PeriodicalId":18735,"journal":{"name":"Molecular Biology of the Cell","volume":" ","pages":"ar131"},"PeriodicalIF":2.7,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144992896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Madison E Walsh, Keerthana Chetlapalli, Benjamin S Styler, Srigokul Upadhyayula, Grant A King, Elçin Ünal
{"title":"A Conserved Disruption of Nucleocytoplasmic Compartmentalization in Meiosis is Controlled by a Kinase-Phosphatase Pair in <i>Saccharomyces cerevisiae</i>.","authors":"Madison E Walsh, Keerthana Chetlapalli, Benjamin S Styler, Srigokul Upadhyayula, Grant A King, Elçin Ünal","doi":"10.1091/mbc.E25-05-0229","DOIUrl":"10.1091/mbc.E25-05-0229","url":null,"abstract":"<p><p>In eukaryotic organisms, the nucleus is remodeled to accommodate the space required for chromosome segregation. Remodeling strategies range from closed division, where the nuclear envelope remains intact, to open divisions, where the nuclear envelope is temporarily disassembled. While the budding yeast <i>Saccharomyces cerevisiae</i> undergoes closed mitosis, its meiotic nuclear division strategy is less understood. Here we investigate nucleocytoplasmic compartmentalization during budding yeast meiosis and discover that meiosis II represents a semi-closed division marked by bidirectional mixing between the nucleus and cytoplasm. This includes nuclear entry of the Ran GTPase activating protein (RanGAP), typically cytoplasmic, although RanGAP relocalization appears to be a consequence, rather than a cause of permeability changes. This intercompartmental mixing occurs without nuclear envelope breakdown or dispersal of nucleoporins and is independent of known nuclear pore complex remodeling events. This phenomenon, termed virtual nuclear envelope breakdown (vNEBD), represents a unique mechanism distinct from other semi-closed divisions. We demonstrate that vNEBD is integrated into the meiotic program and regulated by the conserved meiotic kinase Ime2 and the meiosis-specific protein phosphatase 1 regulatory subunit, Gip1. Remarkably, the vNEBD event is conserved between <i>S. cerevisiae</i> and the distantly related <i>Schizosaccharomyces pombe</i>, indicating a fundamental role in meiosis.</p>","PeriodicalId":18735,"journal":{"name":"Molecular Biology of the Cell","volume":" ","pages":"mbcE25050229"},"PeriodicalIF":2.7,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145251872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}