Madison E Walsh, Keerthana Chetlapalli, Benjamin S Styler, Srigokul Upadhyayula, Grant A King, Elçin Ünal
{"title":"酿酒酵母菌减数分裂中核质区隔的保守破坏是由激酶-磷酸酶对控制的。","authors":"Madison E Walsh, Keerthana Chetlapalli, Benjamin S Styler, Srigokul Upadhyayula, Grant A King, Elçin Ünal","doi":"10.1091/mbc.E25-05-0229","DOIUrl":null,"url":null,"abstract":"<p><p>In eukaryotic organisms, the nucleus is remodeled to accommodate the space required for chromosome segregation. Remodeling strategies range from closed division, where the nuclear envelope remains intact, to open divisions, where the nuclear envelope is temporarily disassembled. While the budding yeast <i>Saccharomyces cerevisiae</i> undergoes closed mitosis, its meiotic nuclear division strategy is less understood. Here we investigate nucleocytoplasmic compartmentalization during budding yeast meiosis and discover that meiosis II represents a semi-closed division marked by bidirectional mixing between the nucleus and cytoplasm. This includes nuclear entry of the Ran GTPase activating protein (RanGAP), typically cytoplasmic, although RanGAP relocalization appears to be a consequence, rather than a cause of permeability changes. This intercompartmental mixing occurs without nuclear envelope breakdown or dispersal of nucleoporins and is independent of known nuclear pore complex remodeling events. This phenomenon, termed virtual nuclear envelope breakdown (vNEBD), represents a unique mechanism distinct from other semi-closed divisions. We demonstrate that vNEBD is integrated into the meiotic program and regulated by the conserved meiotic kinase Ime2 and the meiosis-specific protein phosphatase 1 regulatory subunit, Gip1. Remarkably, the vNEBD event is conserved between <i>S. cerevisiae</i> and the distantly related <i>Schizosaccharomyces pombe</i>, indicating a fundamental role in meiosis.</p>","PeriodicalId":18735,"journal":{"name":"Molecular Biology of the Cell","volume":" ","pages":"mbcE25050229"},"PeriodicalIF":2.7000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Conserved Disruption of Nucleocytoplasmic Compartmentalization in Meiosis is Controlled by a Kinase-Phosphatase Pair in <i>Saccharomyces cerevisiae</i>.\",\"authors\":\"Madison E Walsh, Keerthana Chetlapalli, Benjamin S Styler, Srigokul Upadhyayula, Grant A King, Elçin Ünal\",\"doi\":\"10.1091/mbc.E25-05-0229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In eukaryotic organisms, the nucleus is remodeled to accommodate the space required for chromosome segregation. Remodeling strategies range from closed division, where the nuclear envelope remains intact, to open divisions, where the nuclear envelope is temporarily disassembled. While the budding yeast <i>Saccharomyces cerevisiae</i> undergoes closed mitosis, its meiotic nuclear division strategy is less understood. Here we investigate nucleocytoplasmic compartmentalization during budding yeast meiosis and discover that meiosis II represents a semi-closed division marked by bidirectional mixing between the nucleus and cytoplasm. This includes nuclear entry of the Ran GTPase activating protein (RanGAP), typically cytoplasmic, although RanGAP relocalization appears to be a consequence, rather than a cause of permeability changes. This intercompartmental mixing occurs without nuclear envelope breakdown or dispersal of nucleoporins and is independent of known nuclear pore complex remodeling events. This phenomenon, termed virtual nuclear envelope breakdown (vNEBD), represents a unique mechanism distinct from other semi-closed divisions. We demonstrate that vNEBD is integrated into the meiotic program and regulated by the conserved meiotic kinase Ime2 and the meiosis-specific protein phosphatase 1 regulatory subunit, Gip1. Remarkably, the vNEBD event is conserved between <i>S. cerevisiae</i> and the distantly related <i>Schizosaccharomyces pombe</i>, indicating a fundamental role in meiosis.</p>\",\"PeriodicalId\":18735,\"journal\":{\"name\":\"Molecular Biology of the Cell\",\"volume\":\" \",\"pages\":\"mbcE25050229\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Biology of the Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1091/mbc.E25-05-0229\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biology of the Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1091/mbc.E25-05-0229","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
A Conserved Disruption of Nucleocytoplasmic Compartmentalization in Meiosis is Controlled by a Kinase-Phosphatase Pair in Saccharomyces cerevisiae.
In eukaryotic organisms, the nucleus is remodeled to accommodate the space required for chromosome segregation. Remodeling strategies range from closed division, where the nuclear envelope remains intact, to open divisions, where the nuclear envelope is temporarily disassembled. While the budding yeast Saccharomyces cerevisiae undergoes closed mitosis, its meiotic nuclear division strategy is less understood. Here we investigate nucleocytoplasmic compartmentalization during budding yeast meiosis and discover that meiosis II represents a semi-closed division marked by bidirectional mixing between the nucleus and cytoplasm. This includes nuclear entry of the Ran GTPase activating protein (RanGAP), typically cytoplasmic, although RanGAP relocalization appears to be a consequence, rather than a cause of permeability changes. This intercompartmental mixing occurs without nuclear envelope breakdown or dispersal of nucleoporins and is independent of known nuclear pore complex remodeling events. This phenomenon, termed virtual nuclear envelope breakdown (vNEBD), represents a unique mechanism distinct from other semi-closed divisions. We demonstrate that vNEBD is integrated into the meiotic program and regulated by the conserved meiotic kinase Ime2 and the meiosis-specific protein phosphatase 1 regulatory subunit, Gip1. Remarkably, the vNEBD event is conserved between S. cerevisiae and the distantly related Schizosaccharomyces pombe, indicating a fundamental role in meiosis.
期刊介绍:
MBoC publishes research articles that present conceptual advances of broad interest and significance within all areas of cell, molecular, and developmental biology. We welcome manuscripts that describe advances with applications across topics including but not limited to: cell growth and division; nuclear and cytoskeletal processes; membrane trafficking and autophagy; organelle biology; quantitative cell biology; physical cell biology and mechanobiology; cell signaling; stem cell biology and development; cancer biology; cellular immunology and microbial pathogenesis; cellular neurobiology; prokaryotic cell biology; and cell biology of disease.