{"title":"Induction of postmeiotic DNA double-strand breaks by the Pnu1 endonuclease in <i>Schizosaccharomyces pombe</i>.","authors":"Loïs Mourrain, Tiphanie Cavé, Guylain Boissonneault","doi":"10.1091/mbc.E25-05-0246","DOIUrl":null,"url":null,"abstract":"<p><p>Meiosis is a source of genetic variation in eukaryotes. Meiosis in the eukaryotic fission yeast <i>Schizosaccharomyces pombe</i> leads to the formation of spores that are particularly resistant to environmental stresses. In addition to external factors, internal processes may nevertheless contribute to cellular stress and impact the genome. This study investigates the role of Pnu1 as the major meiotic nuclease in <i>S. pombe</i>. Transcription and cellular expression of Pnu1 are regulated upon specific phases of meiosis, while its mitochondrial localization is also altered during this process. As a result, Pnu1 induces fragmentation of both genomic and mitochondrial DNA in the postmeiotic phase. This sugar-nonspecific endonuclease generates random double-strand breaks across the genome, an activity that appears to be mediated by direct interaction with chromatin. Given the high spore viability (∼95%) and the widespread occurrence of this phenomenon, this fragmentation appears to be physiological rather than apoptotic as observed in mammals. EndoG is the mammalian homologue of Pnu1 and is a caspase-independent apoptotic endonuclease that can allow cell survival. This study further describes the dynamics of Pnu1 action and supports the conclusion that Pnu1 is a major meiotic endonuclease of <i>S. pombe</i> responsible for a transient postmeiotic fragmentation of cellular DNA, potentially contributing to genetic variability.</p>","PeriodicalId":18735,"journal":{"name":"Molecular Biology of the Cell","volume":" ","pages":"ar131"},"PeriodicalIF":2.7000,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biology of the Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1091/mbc.E25-05-0246","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/3 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Meiosis is a source of genetic variation in eukaryotes. Meiosis in the eukaryotic fission yeast Schizosaccharomyces pombe leads to the formation of spores that are particularly resistant to environmental stresses. In addition to external factors, internal processes may nevertheless contribute to cellular stress and impact the genome. This study investigates the role of Pnu1 as the major meiotic nuclease in S. pombe. Transcription and cellular expression of Pnu1 are regulated upon specific phases of meiosis, while its mitochondrial localization is also altered during this process. As a result, Pnu1 induces fragmentation of both genomic and mitochondrial DNA in the postmeiotic phase. This sugar-nonspecific endonuclease generates random double-strand breaks across the genome, an activity that appears to be mediated by direct interaction with chromatin. Given the high spore viability (∼95%) and the widespread occurrence of this phenomenon, this fragmentation appears to be physiological rather than apoptotic as observed in mammals. EndoG is the mammalian homologue of Pnu1 and is a caspase-independent apoptotic endonuclease that can allow cell survival. This study further describes the dynamics of Pnu1 action and supports the conclusion that Pnu1 is a major meiotic endonuclease of S. pombe responsible for a transient postmeiotic fragmentation of cellular DNA, potentially contributing to genetic variability.
期刊介绍:
MBoC publishes research articles that present conceptual advances of broad interest and significance within all areas of cell, molecular, and developmental biology. We welcome manuscripts that describe advances with applications across topics including but not limited to: cell growth and division; nuclear and cytoskeletal processes; membrane trafficking and autophagy; organelle biology; quantitative cell biology; physical cell biology and mechanobiology; cell signaling; stem cell biology and development; cancer biology; cellular immunology and microbial pathogenesis; cellular neurobiology; prokaryotic cell biology; and cell biology of disease.