Microbial Ecology最新文献

筛选
英文 中文
Metagenomic Analysis of Rhizospheric Bacterial Community of Citrus Trees Expressing Phloem-Directed Antimicrobials. 表达韧皮部定向抗菌素的柑橘树根瘤菌群落的元基因组分析
IF 3.3 3区 生物学
Microbial Ecology Pub Date : 2024-07-15 DOI: 10.1007/s00248-024-02408-w
Leandro Alberto Núñez-Muñoz, Martín Eduardo Sánchez-García, Berenice Calderón-Pérez, Rodolfo De la Torre-Almaraz, Roberto Ruiz-Medrano, Beatriz Xoconostle-Cázares
{"title":"Metagenomic Analysis of Rhizospheric Bacterial Community of Citrus Trees Expressing Phloem-Directed Antimicrobials.","authors":"Leandro Alberto Núñez-Muñoz, Martín Eduardo Sánchez-García, Berenice Calderón-Pérez, Rodolfo De la Torre-Almaraz, Roberto Ruiz-Medrano, Beatriz Xoconostle-Cázares","doi":"10.1007/s00248-024-02408-w","DOIUrl":"10.1007/s00248-024-02408-w","url":null,"abstract":"<p><p>Huanglongbing, also known as citrus greening, is currently the most devastating citrus disease with limited success in prevention and mitigation. A promising strategy for Huanglongbing control is the use of antimicrobials fused to a carrier protein (phloem protein of 16 kDa or PP16) that targets vascular tissues. This study investigated the effects of genetically modified citrus trees expressing Citrus sinensis PP16 (CsPP16) fused to human lysozyme and β-defensin-2 on the soil microbiome diversity using 16S amplicon analysis. The results indicated that there were no significant alterations in alpha diversity, beta diversity, phylogenetic diversity, differential abundance, or functional prediction between the antimicrobial phloem-overexpressing plants and the control group, suggesting minimal impact on microbial community structure. However, microbiota diversity analysis revealed distinct bacterial assemblages between the rhizosphere soil and root environments. This study helps to understand the ecological implications of crops expressing phloem-targeted antimicrobials for vascular disease management, with minimal impact on soil microbiota.</p>","PeriodicalId":18708,"journal":{"name":"Microbial Ecology","volume":"87 1","pages":"93"},"PeriodicalIF":3.3,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11249458/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141616849","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Highly Diverse Symbiodiniaceae Types Hosted by Corals in a Global Hotspot of Marine Biodiversity. 全球海洋生物多样性热点地区珊瑚寄生的高度多样化的共生藻属类型。
IF 3.3 3区 生物学
Microbial Ecology Pub Date : 2024-07-10 DOI: 10.1007/s00248-024-02407-x
Ming Sheng Ng, Nathaniel Soon, Lutfi Afiq-Rosli, Ismael Kunning, Ralph R Mana, Ying Chang, Benjamin J Wainwright
{"title":"Highly Diverse Symbiodiniaceae Types Hosted by Corals in a Global Hotspot of Marine Biodiversity.","authors":"Ming Sheng Ng, Nathaniel Soon, Lutfi Afiq-Rosli, Ismael Kunning, Ralph R Mana, Ying Chang, Benjamin J Wainwright","doi":"10.1007/s00248-024-02407-x","DOIUrl":"10.1007/s00248-024-02407-x","url":null,"abstract":"<p><p>Symbiotic dinoflagellates in the genus Symbiodiniaceae play vital roles in promoting resilience and increasing stress tolerance in their coral hosts. While much of the world's coral succumb to the stresses associated with increasingly severe and frequent thermal bleaching events, live coral cover in Papua New Guinea (PNG) remains some of the highest reported globally despite the historically warm waters surrounding the country. Yet, in spite of the high coral cover in PNG and the acknowledged roles Symbiodiniaceae play within their hosts, these communities have not been characterized in this global biodiversity hotspot. Using high-throughput sequencing of the ITS2 rDNA gene, we profiled the endosymbionts of four coral species, Diploastrea heliopora, Pachyseris speciosa, Pocillopora acuta, and Porites lutea, across six sites in PNG. Our findings reveal patterns of Cladocopium and Durusdinium dominance similar to other reefs in the Coral Triangle, albeit with much greater intra- and intergenomic variation. Host- and site-specific variations in Symbiodiniaceae type profiles were observed across collection sites, appearing to be driven by environmental conditions. Notably, the extensive intra- and intergenomic variation, coupled with many previously unreported sequences, highlight PNG as a potential hotspot of symbiont diversity. This work represents the first characterization of the coral-symbiont community structure in the PNG marine biodiversity hotspot, serving as a baseline for future studies.</p>","PeriodicalId":18708,"journal":{"name":"Microbial Ecology","volume":"87 1","pages":"92"},"PeriodicalIF":3.3,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11236936/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141580237","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spatial and Temporal Shifts of Endophytic Bacteria in Conifer Seedlings of Abies religiosa (Kunth) Schltdl. & Cham. 松柏(Abies religiosa (Kunth) Schltdl. & Cham.
IF 3.3 3区 生物学
Microbial Ecology Pub Date : 2024-07-03 DOI: 10.1007/s00248-024-02398-9
Luc Dendooven, Valentín Pérez-Hernández, Gabriel Navarro-Pérez, Juanita Tlalmis-Corona, Yendi E Navarro-Noya
{"title":"Spatial and Temporal Shifts of Endophytic Bacteria in Conifer Seedlings of Abies religiosa (Kunth) Schltdl. & Cham.","authors":"Luc Dendooven, Valentín Pérez-Hernández, Gabriel Navarro-Pérez, Juanita Tlalmis-Corona, Yendi E Navarro-Noya","doi":"10.1007/s00248-024-02398-9","DOIUrl":"10.1007/s00248-024-02398-9","url":null,"abstract":"<p><p>Endophytes play an important role in plant development, survival, and establishment, but their temporal dynamics in young conifer plants are still largely unknown. In this study, the bacterial community was determined by metabarcoding of the 16S rRNA gene in the rhizoplane, roots, and aerial parts of 1- and 5-month-old seedlings of natural populations of Abies religiosa (Kunth) Schltdl. & Cham. In 1-month-old seedlings, Pseudomonas dominated aerial parts (relative abundance 71.6%) and roots (37.9%). However, the roots exhibited significantly higher bacterial species richness than the aerial parts, with the dissimilarity between these plant sections mostly explained by the loss of bacterial amplification sequence variants. After 5 months, Mucilaginibacter dominated in the rhizoplane (9.0%), Streptomyces in the roots (12.2%), and Pseudomonas in the aerial parts (18.1%). The bacterial richness and community structure differed significantly between the plant sections, and these variations were explained mostly by 1-for-1 substitution. The relative abundance of putative metabolic pathways significantly differed between the plant sections at both 1 and 5 months. All the dominant bacterial genera (e.g., Pseudomonas and Burkholderia-Caballeronia-Paraburkholderia) have been reported to have plant growth-promoting capacities and/or antagonism against pathogens, but what defines their role for plant development has still to be determined. This investigation improves our understanding of the early plant-bacteria interactions essential for natural regeneration of A. religiosa forest.</p>","PeriodicalId":18708,"journal":{"name":"Microbial Ecology","volume":"87 1","pages":"90"},"PeriodicalIF":3.3,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11222277/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141492625","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microbiome Dynamics and Functional Composition in Coelopa frigida (Diptera, Coelopidae): Insights into Trophic Specialization of Kelp Flies. 鳗蝇(双翅目,鳗蝇科)的微生物组动态和功能组成:海带蝇营养特化的启示。
IF 3.3 3区 生物学
Microbial Ecology Pub Date : 2024-07-03 DOI: 10.1007/s00248-024-02403-1
Paul S P Bischof, Theda U P Bartolomaeus, Ulrike Löber, Christoph Bleidorn
{"title":"Microbiome Dynamics and Functional Composition in Coelopa frigida (Diptera, Coelopidae): Insights into Trophic Specialization of Kelp Flies.","authors":"Paul S P Bischof, Theda U P Bartolomaeus, Ulrike Löber, Christoph Bleidorn","doi":"10.1007/s00248-024-02403-1","DOIUrl":"10.1007/s00248-024-02403-1","url":null,"abstract":"<p><p>Coelopidae (Diptera), known as kelp flies, exhibit an ecological association with beached kelp and other rotting seaweeds. This unique trophic specialization necessitates significant adaptations to overcome the limitations of an algal diet. We aimed to investigate whether the flies' microbiome could be one of these adaptive mechanisms. Our analysis focused on assessing composition and diversity of adult and larval microbiota of the kelp fly Coelopa frigida. Feeding habits of the larvae of this species have been subject of numerous studies, with debates whether they directly consume kelp or primarily feed on associated bacteria. By using a 16S rRNA metabarcoding approach, we found that the larval microbiota displayed considerably less diversity than adults, heavily dominated by only four operational taxonomic units (OTUs). Phylogenetic placement recovered the most dominant OTU of the larval microbiome, which is the source of more than half of all metabarcoding sequence reads, as an undescribed genus of Orbaceae (Gammaproteobacteria). Interestingly, this OTU is barely found among the 15 most abundant taxa of the adult microbiome, where it is responsible for less than 2% of the metabarcoding sequence reads. The other three OTUs dominating the larval microbiome have been assigned as Psychrobacter (Gammaproteobacteria), Wohlfahrtiimonas (Gammaproteobacteria), and Cetobacterium (Fusobacteriota). Moreover, we also uncovered a distinct shift in the functional composition between the larval and adult stages, where our taxonomic profiling suggests a significant decrease in functional diversity in larval samples. Our study offers insights into the microbiome dynamics and functional composition of Coelopa frigida.</p>","PeriodicalId":18708,"journal":{"name":"Microbial Ecology","volume":"87 1","pages":"91"},"PeriodicalIF":3.3,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11222186/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141498383","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical and Thermal Response of the Bacterivorous Ciliate Colpidium kleini, a Species Potentially at Risk of Extinction by Rising Water Temperatures. 水温升高可能导致濒临灭绝的食菌纤毛虫 Colpidium kleini 的数值和热反应。
IF 3.3 3区 生物学
Microbial Ecology Pub Date : 2024-07-02 DOI: 10.1007/s00248-024-02406-y
Thomas Weisse, Thomas Pröschold, Barbara Kammerlander, Bettina Sonntag, Laura Schicker
{"title":"Numerical and Thermal Response of the Bacterivorous Ciliate Colpidium kleini, a Species Potentially at Risk of Extinction by Rising Water Temperatures.","authors":"Thomas Weisse, Thomas Pröschold, Barbara Kammerlander, Bettina Sonntag, Laura Schicker","doi":"10.1007/s00248-024-02406-y","DOIUrl":"10.1007/s00248-024-02406-y","url":null,"abstract":"<p><p>We investigated the food-dependent growth and thermal response of the freshwater ciliate Colpidium kleini using numerical response (NR) experiments. This bacterivorous ciliate occurs in lotic water and the pelagial of lakes and ponds. The C. kleini strain used in this work was isolated from a small alpine lake and identified by combining detailed morphological inspections with molecular phylogeny. Specific growth rates (r<sub>max</sub>) were measured from 5 to 21 °C. The ciliate did not survive at 22 °C. The threshold bacterial food levels (0.3 - 2.2 × 10<sup>6</sup> bacterial cells mL<sup>-1</sup>) matched the bacterial abundance in the alpine lake from which C. kleini was isolated. The food threshold was notably lower than previously reported for C. kleini and two other Colpidium species. The threshold was similar to levels reported for oligotrich and choreotrich ciliates if expressed in terms of bacterial biomass (0.05 - 0.43 mg C L<sup>-1</sup>). From the NR results, we calculated physiological mortality rates at zero food concentration. The mean mortality (0.55 ± 0.17 d<sup>-1</sup>) of C. kleini was close to the mean estimate obtained for other planktonic ciliates that do not encyst. We used the data obtained by the NR experiments to fit a thermal performance curve (TPC). The TPC yielded a temperature optimum at 17.3 °C for C. kleini, a maximum upper thermal tolerance limit of 21.9 °C, and a thermal safety margin of 4.6 °C. We demonstrated that combining NR with TPC analysis is a powerful tool to predict better a species' fitness in response to temperature and food.</p>","PeriodicalId":18708,"journal":{"name":"Microbial Ecology","volume":"87 1","pages":"89"},"PeriodicalIF":3.3,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11219425/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141492624","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recover of Soil Microbial Community Functions in Beech and Turkey Oak Forests After Coppicing Interventions. 山毛榉和火鸡栎森林砍伐干预后土壤微生物群落功能的恢复。
IF 3.3 3区 生物学
Microbial Ecology Pub Date : 2024-06-28 DOI: 10.1007/s00248-024-02402-2
Enrica Picariello, Flavia De Nicola
{"title":"Recover of Soil Microbial Community Functions in Beech and Turkey Oak Forests After Coppicing Interventions.","authors":"Enrica Picariello, Flavia De Nicola","doi":"10.1007/s00248-024-02402-2","DOIUrl":"https://doi.org/10.1007/s00248-024-02402-2","url":null,"abstract":"<p><p>Forest management influences the occurrence of tree species, the organic matter input to the soil decomposer system, and hence, it can alter soil microbial community and key ecosystem functions it performs. In this study, we compared the potential effect of different forest management, coppice and high forest, on soil microbial functional diversity, enzyme activities and chemical-physical soil properties in two forests, turkey oak and beech, during summer and autumn. We hypothesized that coppicing influences soil microbial functional diversity with an overall decrease. Contrary to our hypothesis, in summer, the functional diversity of soil microbial community was higher in both coppice forests, suggesting a resilience response of the microbial communities in the soil after tree cutting, which occurred 15-20 years ago. In beech forest under coppice management, a higher content of soil organic matter (but also of soil recalcitrant and stable organic carbon) compared to high forest can explain the higher soil microbial functional diversity and metabolic activity. In turkey oak forest, although differences in functional diversity of soil microbial community between management were observed, for the other investigated parameters, the differences were mainly linked to seasonality. The findings highlight that the soil organic matter preservation depends on the type of forest, but the soil microbial community was able to recover after about 15 years from coppice intervention in both forest ecosystems. Thus, the type of management implemented in these forest ecosystems, not negatively affecting soil organic matter pool, preserving microbial community and potentially soil ecological functions, is sustainable in a scenario of climate change.</p>","PeriodicalId":18708,"journal":{"name":"Microbial Ecology","volume":"87 1","pages":"86"},"PeriodicalIF":3.3,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11213729/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141469445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Uncovering the Role of Autochthonous Deteriogenic Biofilm Community: Rožanec Mithraeum Monument (Slovenia). 揭示自生污垢生物膜群落的作用:Rožanec Mithraeum 纪念碑(斯洛文尼亚)。
IF 3.3 3区 生物学
Microbial Ecology Pub Date : 2024-06-28 DOI: 10.1007/s00248-024-02404-0
M Ljaljević Grbić, Ivica Dimkić, Tamara Janakiev, Janez Kosel, Črtomir Tavzes, Slađana Popović, Aleksandar Knežević, Lea Legan, Klara Retko, Polonca Ropret, Nikola Unković
{"title":"Uncovering the Role of Autochthonous Deteriogenic Biofilm Community: Rožanec Mithraeum Monument (Slovenia).","authors":"M Ljaljević Grbić, Ivica Dimkić, Tamara Janakiev, Janez Kosel, Črtomir Tavzes, Slađana Popović, Aleksandar Knežević, Lea Legan, Klara Retko, Polonca Ropret, Nikola Unković","doi":"10.1007/s00248-024-02404-0","DOIUrl":"https://doi.org/10.1007/s00248-024-02404-0","url":null,"abstract":"<p><p>The primary purpose of the study, as part of the planned conservation work, was to uncover all aspects of autochthonous biofilm pertaining to the formation of numerous deterioration symptoms occurring on the limestone Rožanec Mithraeum monument in Slovenia. Using state-of-the-art sequencing technologies combining mycobiome data with observations made via numerous light and spectroscopic (FTIR and Raman) microscopy analyses pointed out to epilithic lichen Gyalecta jenensis and its photobiont, carotenoid-rich Trentepohlia aurea, as the origin of salmon-hued pigmented alterations of limestone surface. Furthermore, the development of the main deterioration symptom on the monument, i.e., biopitting, was instigated by the formation of typical endolithic thalli and ascomata of representative Verrucariaceae family (Verrucaria sp.) in conjunction with the oxalic acid-mediated dissolution of limestone. The domination of lichenized fungi, as the main deterioration agents, both on the relief and surrounding limestone, was additionally supported by the high relative abundance of lichenized and symbiotroph groups in FUNGuild analysis. Obtained results not only upgraded knowledge of this frequently occurring but often overlooked group of extremophilic stone heritage deteriogens but also provided a necessary groundwork for the development of efficient biocontrol formulation applicable in situ for the preservation of similarly affected limestone monuments.</p>","PeriodicalId":18708,"journal":{"name":"Microbial Ecology","volume":"87 1","pages":"87"},"PeriodicalIF":3.3,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11213730/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141469470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microplastics Biodegradation by Estuarine and Landfill Microbiomes. 河口和垃圾填埋场微生物群的微塑料生物降解。
IF 3.3 3区 生物学
Microbial Ecology Pub Date : 2024-06-28 DOI: 10.1007/s00248-024-02399-8
Cristina S Pires, Luís Costa, Sónia G Barbosa, João Carlos Sequeira, Diogo Cachetas, José P Freitas, Gilberto Martins, Ana Vera Machado, Ana J Cavaleiro, Andreia F Salvador
{"title":"Microplastics Biodegradation by Estuarine and Landfill Microbiomes.","authors":"Cristina S Pires, Luís Costa, Sónia G Barbosa, João Carlos Sequeira, Diogo Cachetas, José P Freitas, Gilberto Martins, Ana Vera Machado, Ana J Cavaleiro, Andreia F Salvador","doi":"10.1007/s00248-024-02399-8","DOIUrl":"https://doi.org/10.1007/s00248-024-02399-8","url":null,"abstract":"<p><p>Plastic pollution poses a worldwide environmental challenge, affecting wildlife and human health. Assessing the biodegradation capabilities of natural microbiomes in environments contaminated with microplastics is crucial for mitigating the effects of plastic pollution. In this work, we evaluated the potential of landfill leachate (LL) and estuarine sediments (ES) to biodegrade polyethylene (PE), polyethylene terephthalate (PET), and polycaprolactone (PCL), under aerobic, anaerobic, thermophilic, and mesophilic conditions. PCL underwent extensive aerobic biodegradation with LL (99 ± 7%) and ES (78 ± 3%) within 50-60 days. Under anaerobic conditions, LL degraded 87 ± 19% of PCL in 60 days, whereas ES showed minimal biodegradation (3 ± 0.3%). PE and PET showed no notable degradation. Metataxonomics results (16S rRNA sequencing) revealed the presence of highly abundant thermophilic microorganisms assigned to Coprothermobacter sp. (6.8% and 28% relative abundance in anaerobic and aerobic incubations, respectively). Coprothermobacter spp. contain genes encoding two enzymes, an esterase and a thermostable monoacylglycerol lipase, that can potentially catalyze PCL hydrolysis. These results suggest that Coprothermobacter sp. may be pivotal in landfill leachate microbiomes for thermophilic PCL biodegradation across varying conditions. The anaerobic microbial community was dominated by hydrogenotrophic methanogens assigned to Methanothermobacter sp. (21%), pointing at possible syntrophic interactions with Coprothermobacter sp. (a H<sub>2</sub>-producer) during PCL biodegradation. In the aerobic experiments, fungi dominated the eukaryotic microbial community (e.g., Exophiala (41%), Penicillium (17%), and Mucor (18%)), suggesting that aerobic PCL biodegradation by LL involves collaboration between fungi and bacteria. Our findings bring insights on the microbial communities and microbial interactions mediating plastic biodegradation, offering valuable perspectives for plastic pollution mitigation.</p>","PeriodicalId":18708,"journal":{"name":"Microbial Ecology","volume":"87 1","pages":"88"},"PeriodicalIF":3.3,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11213754/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141469444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization and Abundance of Plasmid-Dependent Alphatectivirus Bacteriophages. 依赖质粒的噬菌体的特征和丰度
IF 3.3 3区 生物学
Microbial Ecology Pub Date : 2024-06-27 DOI: 10.1007/s00248-024-02401-3
Boris Parra, Veronika T Lutz, Lone Brøndsted, Javiera L Carmona, Alejandro Palomo, Joseph Nesme, Vuong Van Hung Le, Barth F Smets, Arnaud Dechesne
{"title":"Characterization and Abundance of Plasmid-Dependent Alphatectivirus Bacteriophages.","authors":"Boris Parra, Veronika T Lutz, Lone Brøndsted, Javiera L Carmona, Alejandro Palomo, Joseph Nesme, Vuong Van Hung Le, Barth F Smets, Arnaud Dechesne","doi":"10.1007/s00248-024-02401-3","DOIUrl":"10.1007/s00248-024-02401-3","url":null,"abstract":"<p><p>Antimicrobial resistance (AMR) is a major public health threat, exacerbated by the ability of bacteria to rapidly disseminate antimicrobial resistance genes (ARG). Since conjugative plasmids of the incompatibility group P (IncP) are ubiquitous mobile genetic elements that often carry ARG and are broad-host-range, they are important targets to prevent the dissemination of AMR. Plasmid-dependent phages infect plasmid-carrying bacteria by recognizing components of the conjugative secretion system as receptors. We sought to isolate plasmid-dependent phages from wastewater using an avirulent strain of Salmonella enterica carrying the conjugative IncP plasmid pKJK5. Irrespective of the site, we only obtained bacteriophages belonging to the genus Alphatectivirus. Eleven isolates were sequenced, their genomes analyzed, and their host range established using S. enterica, Escherichia coli, and Pseudomonas putida carrying diverse conjugative plasmids. We confirmed that Alphatectivirus are abundant in domestic and hospital wastewater using culture-dependent and culture-independent approaches. However, these results are not consistent with their low or undetectable occurrence in metagenomes. Therefore, overall, our results emphasize the importance of performing phage isolation to uncover diversity, especially considering the potential of plasmid-dependent phages to reduce the spread of ARG carried by conjugative plasmids, and to help combat the AMR crisis.</p>","PeriodicalId":18708,"journal":{"name":"Microbial Ecology","volume":"87 1","pages":"85"},"PeriodicalIF":3.3,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11211187/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141458060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to: Loggerhead Sea Turtles as Hosts of Diverse Bacterial and Fungal Communities. 更正:蠵龟是多种细菌和真菌群落的宿主。
IF 3.3 3区 生物学
Microbial Ecology Pub Date : 2024-06-26 DOI: 10.1007/s00248-024-02405-z
Klara Filek, Borna Branimir Vuković, Marta Žižek, Antonio DiBello, Lucija Kanjer, Adriana Trotta, Marialaura Corrente, Sunčica Bosak
{"title":"Correction to: Loggerhead Sea Turtles as Hosts of Diverse Bacterial and Fungal Communities.","authors":"Klara Filek, Borna Branimir Vuković, Marta Žižek, Antonio DiBello, Lucija Kanjer, Adriana Trotta, Marialaura Corrente, Sunčica Bosak","doi":"10.1007/s00248-024-02405-z","DOIUrl":"10.1007/s00248-024-02405-z","url":null,"abstract":"","PeriodicalId":18708,"journal":{"name":"Microbial Ecology","volume":"87 1","pages":"84"},"PeriodicalIF":3.3,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11208177/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141450916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信