Dual-Domain Primary Succession of Bacteria in Glacier Forefield Streams and Soils of a Maritime and Continental Glacier.

IF 3.3 3区 生物学 Q2 ECOLOGY
Ze Ren, Hongkai Gao, Nicolas Martyniuk, Heng Ren, Xiong Xiong, Wei Luo
{"title":"Dual-Domain Primary Succession of Bacteria in Glacier Forefield Streams and Soils of a Maritime and Continental Glacier.","authors":"Ze Ren, Hongkai Gao, Nicolas Martyniuk, Heng Ren, Xiong Xiong, Wei Luo","doi":"10.1007/s00248-024-02486-w","DOIUrl":null,"url":null,"abstract":"<p><p>Glaciers retreat rapidly and create newly exposed terrestrial and aquatic habitats in glacier forefields, where primary succession proceeds synchronously in glacier forefields. Here, we introduced the \"Dual-Domain Primary Succession\" concept to examine the parallel yet distinct primary succession processes in soil and stream ecosystems within glacier forefields, by focusing on Hailuogou Glacier and Urumqi Glacier No.1 in China. Findings showed that soil bacterial communities exhibited higher α-diversity with a decreasing pattern in Hailuogou Glacier, in contrast to Urumqi Glacier No.1, which displayed lower and unimodally distributed α-diversity along the glacier forefield chronosequence (GFC). A similar pattern emerged in streams, except for an increasing α-diversity trend in Urumqi Glacier No.1 stream along the GFC. Additionally, α-diversity in streams changed more rapidly than in soils for Hailuogou Glacier, but more slowly for Urumqi Glacier No.1. Along GFC, both soil and stream bacterial communities experienced spatial variations, primarily due to species turnover. The succession of community composition was evident at the OTU level, with each module in the co-occurrence network consisting of OTUs enriched at specific successional stages. A substantial number of OTUs shared between paired soil and stream samples showed a decreasing trend along the GFC, while β-diversity increased. The results suggested that bacterial communities have a similar succession pattern but in different pace between soil and stream while having distinct successional trajectories between the studied glaciers. This study highlighted the \"Dual-Domain Primary Succession\" in glacier forefields, but further studies with more glaciers are necessary to make broader generalizations.</p>","PeriodicalId":18708,"journal":{"name":"Microbial Ecology","volume":"88 1","pages":"5"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11829940/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00248-024-02486-w","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Glaciers retreat rapidly and create newly exposed terrestrial and aquatic habitats in glacier forefields, where primary succession proceeds synchronously in glacier forefields. Here, we introduced the "Dual-Domain Primary Succession" concept to examine the parallel yet distinct primary succession processes in soil and stream ecosystems within glacier forefields, by focusing on Hailuogou Glacier and Urumqi Glacier No.1 in China. Findings showed that soil bacterial communities exhibited higher α-diversity with a decreasing pattern in Hailuogou Glacier, in contrast to Urumqi Glacier No.1, which displayed lower and unimodally distributed α-diversity along the glacier forefield chronosequence (GFC). A similar pattern emerged in streams, except for an increasing α-diversity trend in Urumqi Glacier No.1 stream along the GFC. Additionally, α-diversity in streams changed more rapidly than in soils for Hailuogou Glacier, but more slowly for Urumqi Glacier No.1. Along GFC, both soil and stream bacterial communities experienced spatial variations, primarily due to species turnover. The succession of community composition was evident at the OTU level, with each module in the co-occurrence network consisting of OTUs enriched at specific successional stages. A substantial number of OTUs shared between paired soil and stream samples showed a decreasing trend along the GFC, while β-diversity increased. The results suggested that bacterial communities have a similar succession pattern but in different pace between soil and stream while having distinct successional trajectories between the studied glaciers. This study highlighted the "Dual-Domain Primary Succession" in glacier forefields, but further studies with more glaciers are necessary to make broader generalizations.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Microbial Ecology
Microbial Ecology 生物-海洋与淡水生物学
CiteScore
6.90
自引率
2.80%
发文量
212
审稿时长
3-8 weeks
期刊介绍: The journal Microbial Ecology was founded more than 50 years ago by Dr. Ralph Mitchell, Gordon McKay Professor of Applied Biology at Harvard University in Cambridge, MA. The journal has evolved to become a premier location for the presentation of manuscripts that represent advances in the field of microbial ecology. The journal has become a dedicated international forum for the presentation of high-quality scientific investigations of how microorganisms interact with their environment, with each other and with their hosts. Microbial Ecology offers articles of original research in full paper and note formats, as well as brief reviews and topical position papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信