Quinolone Resistance Genes qnr, aac(6')-Ib-cr, oqxAB, and qepA in Environmental Escherichia coli: Insights into Their Genetic Contexts from Comparative Genomics.

IF 3.3 3区 生物学 Q2 ECOLOGY
Ryota Gomi, Fumie Adachi
{"title":"Quinolone Resistance Genes qnr, aac(6')-Ib-cr, oqxAB, and qepA in Environmental Escherichia coli: Insights into Their Genetic Contexts from Comparative Genomics.","authors":"Ryota Gomi, Fumie Adachi","doi":"10.1007/s00248-025-02502-7","DOIUrl":null,"url":null,"abstract":"<p><p>Previous studies have reported the occurrence of transferable quinolone resistance determinants in environmental Escherichia coli. However, little is known about their vectors and genetic contexts. To gain insights into these genetic characteristics, we analyzed the complete genomes of 53 environmental E. coli isolates containing one or more transferable quinolone resistance determinants, including 20 sequenced in this study and 33 sourced from RefSeq. The studied genomes carried the following transferable quinolone resistance determinants alone or in combination: aac(6')-Ib-cr, oqxAB, qepA1, qnrA1, qnrB4, qnrB7, qnrB19, qnrD1, qnrS1, and qnrS2, with qnrS1 being predominant. These resistance genes were detected on plasmids of diverse replicon types; however, aac(6')-Ib-cr, qnrS1, and qnrS2 were also detected on the chromosome. The genetic contexts surrounding these genes included not only those found in clinical isolates but also novel contexts, such as qnrD1 embedded within a composite transposon-like structure bounded by Tn3-derived inverted-repeat miniature elements (TIMEs). This study provides deep insights into mobile genetic elements associated with transferable quinolone resistance determinants, highlighting the importance of genomic surveillance of antimicrobial-resistant bacteria in the environment.</p>","PeriodicalId":18708,"journal":{"name":"Microbial Ecology","volume":"88 1","pages":"6"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11832570/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00248-025-02502-7","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Previous studies have reported the occurrence of transferable quinolone resistance determinants in environmental Escherichia coli. However, little is known about their vectors and genetic contexts. To gain insights into these genetic characteristics, we analyzed the complete genomes of 53 environmental E. coli isolates containing one or more transferable quinolone resistance determinants, including 20 sequenced in this study and 33 sourced from RefSeq. The studied genomes carried the following transferable quinolone resistance determinants alone or in combination: aac(6')-Ib-cr, oqxAB, qepA1, qnrA1, qnrB4, qnrB7, qnrB19, qnrD1, qnrS1, and qnrS2, with qnrS1 being predominant. These resistance genes were detected on plasmids of diverse replicon types; however, aac(6')-Ib-cr, qnrS1, and qnrS2 were also detected on the chromosome. The genetic contexts surrounding these genes included not only those found in clinical isolates but also novel contexts, such as qnrD1 embedded within a composite transposon-like structure bounded by Tn3-derived inverted-repeat miniature elements (TIMEs). This study provides deep insights into mobile genetic elements associated with transferable quinolone resistance determinants, highlighting the importance of genomic surveillance of antimicrobial-resistant bacteria in the environment.

环境大肠杆菌中的喹诺酮类耐药基因qnr, aac(6')-Ib-cr, oqxAB和qepA:从比较基因组学角度分析它们的遗传背景
以前的研究报道了环境大肠杆菌中可转移的喹诺酮类耐药决定因素的发生。然而,人们对它们的载体和遗传背景知之甚少。为了深入了解这些遗传特征,我们分析了53株含有一种或多种可转移喹诺酮类耐药性决定因子的环境大肠杆菌的全基因组,其中20株在本研究中测序,33株来自RefSeq。所研究的基因组单独或联合携带以下可转移的喹诺酮类耐药决定因子:aac(6’)-Ib-cr、oqxAB、qepA1、qnrA1、qnrB4、qnrB7、qnrB19、qnrD1、qnrS1和qnrS2,其中qnrS1占主导地位。这些抗性基因在不同复制子类型的质粒上检测到;然而,在染色体上也检测到aac(6’)-Ib-cr、qnrS1和qnrS2。围绕这些基因的遗传背景不仅包括在临床分离株中发现的遗传背景,还包括新的遗传背景,例如嵌入在由tn3衍生的倒置重复微型元件(TIMEs)结合的复合转座子样结构中的qnrD1。这项研究提供了与可转移喹诺酮类药物耐药决定因素相关的移动遗传元件的深入见解,强调了环境中抗微生物耐药细菌基因组监测的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Microbial Ecology
Microbial Ecology 生物-海洋与淡水生物学
CiteScore
6.90
自引率
2.80%
发文量
212
审稿时长
3-8 weeks
期刊介绍: The journal Microbial Ecology was founded more than 50 years ago by Dr. Ralph Mitchell, Gordon McKay Professor of Applied Biology at Harvard University in Cambridge, MA. The journal has evolved to become a premier location for the presentation of manuscripts that represent advances in the field of microbial ecology. The journal has become a dedicated international forum for the presentation of high-quality scientific investigations of how microorganisms interact with their environment, with each other and with their hosts. Microbial Ecology offers articles of original research in full paper and note formats, as well as brief reviews and topical position papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信