Håvard Kauserud, Pedro M Martin-Sanchez, Eva Lena Estensmo, Synnøve Botnen, Luis Morgado, Sundy Maurice, Klaus Høiland, Inger Skrede
{"title":"Yeasts Prefer Daycares and Molds Prefer Private Homes.","authors":"Håvard Kauserud, Pedro M Martin-Sanchez, Eva Lena Estensmo, Synnøve Botnen, Luis Morgado, Sundy Maurice, Klaus Høiland, Inger Skrede","doi":"10.1007/s00248-025-02505-4","DOIUrl":null,"url":null,"abstract":"<p><p>Worldwide, people spend most of their time indoors; in their homes, workplaces, schools, and daycares. Indoor fungi can cause negative health effects due to the production of toxins or volatiles that trigger the immune system of the occupants. To what degree indoor fungi (mycobiomes) differ between buildings with different usage is poorly known. Here, we compare the indoor mycobiomes in 123 children's daycare centers and 214 private homes throughout Norway, as revealed by metabarcoding of DNA extracted from dust samples collected by community scientists. Although the fungal richness per se was similar in dust samples from daycares and homes, the fungal community composition differed. Yeast fungi, distributed mainly across the orders Saccharomycetales, Filobasidiales, and Tremellales, were proportionally more abundant in the daycares, while filamentous fungi, including spore-producing molds such as Aspergillus, Penicillum, and Cladosporium, were relatively more abundant in homes. Number of occupants, which is considerably higher in daycares, correlated significantly with the fungal community shift. We hypothesize that the density of occupants and their age distribution drive the systematic difference of yeasts and filamentous fungi in the two building types.</p>","PeriodicalId":18708,"journal":{"name":"Microbial Ecology","volume":"88 1","pages":"7"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11842513/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00248-025-02505-4","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Worldwide, people spend most of their time indoors; in their homes, workplaces, schools, and daycares. Indoor fungi can cause negative health effects due to the production of toxins or volatiles that trigger the immune system of the occupants. To what degree indoor fungi (mycobiomes) differ between buildings with different usage is poorly known. Here, we compare the indoor mycobiomes in 123 children's daycare centers and 214 private homes throughout Norway, as revealed by metabarcoding of DNA extracted from dust samples collected by community scientists. Although the fungal richness per se was similar in dust samples from daycares and homes, the fungal community composition differed. Yeast fungi, distributed mainly across the orders Saccharomycetales, Filobasidiales, and Tremellales, were proportionally more abundant in the daycares, while filamentous fungi, including spore-producing molds such as Aspergillus, Penicillum, and Cladosporium, were relatively more abundant in homes. Number of occupants, which is considerably higher in daycares, correlated significantly with the fungal community shift. We hypothesize that the density of occupants and their age distribution drive the systematic difference of yeasts and filamentous fungi in the two building types.
期刊介绍:
The journal Microbial Ecology was founded more than 50 years ago by Dr. Ralph Mitchell, Gordon McKay Professor of Applied Biology at Harvard University in Cambridge, MA. The journal has evolved to become a premier location for the presentation of manuscripts that represent advances in the field of microbial ecology. The journal has become a dedicated international forum for the presentation of high-quality scientific investigations of how microorganisms interact with their environment, with each other and with their hosts. Microbial Ecology offers articles of original research in full paper and note formats, as well as brief reviews and topical position papers.