{"title":"First detection and biological characterization of an avian metaavulavirus 8 isolated from a migratory swan goose in Qinghai Lake, Northwest China","authors":"Sijie Wang, Xinxin Liu, Jianjun Chen, Weiwen Yan, Hongjin Li, Weiwei Chi, Rui Luo, Xianwen Lin, Yue Yin, Chuanrong Dong, Huihui Wang, Bowen Zheng, Hongli Li, Yifei Liu, Tobias Stoeger, Abdul Wajid, Aleksandar Dodovski, Chao Gao, Claro N. Mingala, Dmitry B. Andreychuk, Renfu Yin","doi":"10.1111/1348-0421.13175","DOIUrl":"10.1111/1348-0421.13175","url":null,"abstract":"<p>Avian metaavulavirus 8 (AMAV-8), formerly known as avian paramyxovirus 8 (APMV-8), has been detected sporadically in wild birds worldwide since it was first identified in a Canadian goose in 1976. However, the presence of AMAV-8 in birds has never been reported in China. To understand the epidemiological situation of AMAV-8 and its ability to infect chickens, we conducted a surveillance study and <i>in vivo</i> analysis of the AMAV-8 isolate identified in total of 14,909 clinical samples collected from wild and domestic birds from 2014 to 2022 in China. However, in 2017, only one AMAV-8 virus (Y7) was successful isolated from the fresh droppings of a migratory swan goose in Qinghai Lake in Northwest China. Thereafter, we report the complete genome sequence of the Y7 strain with a genome length of 15,342 nucleotides and the Y7 isolate was genetically closely-related to wild bird-origin AMAV-8 viruses previously circulated in the United States, Japan, and Kazakhstan. Furthermore, AMAV-8 infections of one-day-old specific pathogen-free (SPF) chicks did not induce any clinical signs over the entire observation period but was associated with viral shedding for up to 8 days. Interestingly, although all birds infected with the Y7 strain seroconverted within the first week of infection, virus replication was only detected in the trachea but not in other tissues such as the brain, lung, or heart. Here, we report the complete genome, genetic and biological characterization, replication and pathogenicity analysis in vivo and first detection of AMAV-8 in China.</p>","PeriodicalId":18679,"journal":{"name":"Microbiology and Immunology","volume":"68 12","pages":"399-405"},"PeriodicalIF":1.9,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142365793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Analysis of neuraminidase activity of human parainfluenza viruses using enzyme-linked lectin assay and BTP3-Neu5Ac assay","authors":"Jie Yang, Tomoko Kisu, Oshi Watanabe, Yuki Kitai, Suguru Ohmiya, Yuxuan Fan, Hidekazu Nishimura","doi":"10.1111/1348-0421.13170","DOIUrl":"10.1111/1348-0421.13170","url":null,"abstract":"<p>Human parainfluenza viruses (hPIVs) are causative agents of upper and lower respiratory tract infections and they have four serotypes. The virion surface displays hemagglutinin-neuraminidase (HN), having hemagglutinating (HA) and neuraminidase (NA) activities in a single molecule. The HA activity binds the virion to sialic acid on the viral receptor on host cells and the NA releases the progeny viruses from the cell surface. There are several methods for assaying viral NA activity, such as the thiobarbituric acid assay, 4-methylumbelliferyl-<i>N</i>-acetyl-α-<span>d</span>-neuraminic acid assay, NA-Star assay, and enzyme-linked lectin assay (ELLA). However, these are mainly used for influenza viruses and not for hPIVs. A fluorescent-based cytochemical NA assay using BTP3-Neu5Ac as the substrate was recently developed and used for orthomyxo- and paramyxoviruses, including types 1 and 3 hPIVs. In this study, we used the ELLA, and BTP-Neu5Ac assay for 14 field isolate strains of hPIVs including all four serotypes. The reaction in ELLA at pH 6.5 using peanut agglutinin (PNA) as a lectin was very low for all tested viruses except a type 3 virus strain with the maximum reaction at pH 6.5 and the acidic conditions did not enhance the reaction. ELLA with another lectin, <i>Erythrina cristagalli</i> agglutinin exhibited significant and stronger reactions than with PNA in some strains of types 1 and 3 viruses. The BTP3-Neu5Ac assay showed a fluorescent signal on cells infected with all the viruses except the hPIV1/Sendai/713/2018 strain in LLC-MK2 and/or MNT-1. The signal was detected in cell-free virus, as well, in all the viruses except the hPIV4a/Sendai/3935/2003 strain. The strength of the signal varied among viral strains but it was stronger in the reaction at pH 4.0 than pH 7.0 and strongest in type 2 hPIVs.</p>","PeriodicalId":18679,"journal":{"name":"Microbiology and Immunology","volume":"68 11","pages":"371-380"},"PeriodicalIF":1.9,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142350166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A single amino acid substitution in the Borna disease virus glycoprotein enhances the infectivity titer of vesicular stomatitis virus pseudotyped virus by altering membrane fusion activity","authors":"Yusa Akiba, Hiromichi Matsugo, Takehiro Kanda, Modoka Sakai, Akiko Makino, Keizo Tomonaga","doi":"10.1111/1348-0421.13172","DOIUrl":"10.1111/1348-0421.13172","url":null,"abstract":"<p>Borna disease virus 1 (BoDV-1) causes acute fatal encephalitis in mammals, including humans. Despite its importance, research on BoDV-1 cell entry has been hindered by low infectious viral particle production in cells and the lack of cytopathic effects, which are typically useful for screening. To address these issues, we developed a method to efficiently produce vesicular stomatitis virus (VSV) pseudotyped with glycoprotein (G) of members of the genus <i>Orthobornavirus</i>, including BoDV-1. We discovered that optimal G expression is required to obtain a high infectivity titer of the VSV pseudotyped virus. Remarkably, the infectivity of the VSV pseudotyped virus with G from the BoDV-1 strain huP2br was significantly higher than that of the VSV pseudotyped virus with G from the He/80 strain. Mutational analysis demonstrated that the methionine at BoDV-1–G residue 307 increases the infectivity titer of VSV pseudotyped with BoDV-1–G (VSV–BoDV-1–G). A cell‒cell fusion assay indicated that this residue plays a pivotal role in membrane fusion, thus suggesting that high membrane fusion activity and a broad pH range for membrane fusion are crucial for achieving a high infectivity titer of VSV–BoDV-1–G. This finding may be extended to increase the infectivity titer of VSV pseudotyped virus with other orthobornavirus G. Our study also contributes to identifying functional domains of BoDV-1–G and provides insight into G-mediated cell entry.</p>","PeriodicalId":18679,"journal":{"name":"Microbiology and Immunology","volume":"68 11","pages":"381-392"},"PeriodicalIF":1.9,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142291326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hai Lv, Fengjuan Shi, Huimin Yin, Yongjun Jiao, Pingmin Wei
{"title":"Development of a double-antibody sandwich ELISA for detection of SARS-CoV-2 variants based on nucleocapsid protein-specific antibodies","authors":"Hai Lv, Fengjuan Shi, Huimin Yin, Yongjun Jiao, Pingmin Wei","doi":"10.1111/1348-0421.13173","DOIUrl":"10.1111/1348-0421.13173","url":null,"abstract":"<p>The COVID-19 pandemic, driven by the SARS-CoV-2 virus, has posed a severe threat to global public health. Rapid, reliable, and easy-to-use detection methods for SARS-CoV-2 variants are critical for effective epidemic prevention and control. The N protein of SARS-CoV-2 serves as an ideal target for antigen detection. In this study, we achieved soluble expression of the recombinant SARS-CoV-2 N protein using an Escherichia coli expression system and generated specific monoclonal antibodies by immunizing BALB/c mice. We successfully developed 10 monoclonal antibodies against the N protein, designated 5B7, 5F2-C11, 5E2-E8, 6C3-D8, 7C8, 9F2-E9, 12H5-D11, 13G2-C10, 14E9-F6, and 15H3-E10. Using these antibodies, we established a sandwich ELISA with 6C3-D8 as the capture antibody and 5F2-C11 as the detection antibody. The assay demonstrated a sensitivity of 0.78 ng/mL and showed no cross-reactivity with MERS-CoV, HCoV-OC43, HCoV-NL63, and HCoV-229E. Furthermore, this method successfully detected both wild-type SARS-CoV-2 and its variants, including Alpha, Beta, Delta, and Omicron. These findings indicate that our sandwich ELISA exhibits excellent sensitivity, specificity, and broad-spectrum applicability, providing a robust tool for detecting SARS-CoV-2 variants.</p>","PeriodicalId":18679,"journal":{"name":"Microbiology and Immunology","volume":"68 11","pages":"393-398"},"PeriodicalIF":1.9,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142265803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Takuhiro Matsumura, Mayu Kitamura, Sho Amatsu, Aki Yamaguchi, Nobuhide Kobayashi, Masahiro Yutani, Yukako Fujinaga
{"title":"Neutralization mechanism of human monoclonal antibodies against type B botulinum neurotoxin","authors":"Takuhiro Matsumura, Mayu Kitamura, Sho Amatsu, Aki Yamaguchi, Nobuhide Kobayashi, Masahiro Yutani, Yukako Fujinaga","doi":"10.1111/1348-0421.13171","DOIUrl":"10.1111/1348-0421.13171","url":null,"abstract":"<p>Botulism is a deadly neuroparalytic condition caused by the botulinum neurotoxin (BoNT) produced by <i>Clostridium botulinum</i> and related species. Toxin-neutralizing antibodies are the most effective treatments for BoNT intoxication. We generated human monoclonal antibodies neutralizing type B botulinum neurotoxin (BoNT/B), designated M2 and M4. The combination of these antibodies exhibited a strong neutralizing effect against BoNT/B toxicity. In this study, we analyzed the mechanisms of action of these antibodies in vitro. M4 binds to the C-terminus of the heavy chain (the receptor-binding domain) and inhibits BoNT/B binding to neuronal PC12 cells. Although M2 recognized the light (L) chain (the metalloprotease domain), it did not inhibit substrate (VAMP2) cleavage in the cleavage assay. M2 increased the surface localization of BoNT/B in PC12 cells at a later time point, suggesting that M2 inhibits the translocation of the L chain from synaptic vesicles to the cytosol. These results indicate that M2 and M4 inhibit the different processes of BoNT/B individually and that multistep inhibition is important for the synergistic effect of the combination of monoclonal antibodies. Our findings may facilitate the development of effective therapeutic antibodies against BoNTs.</p>","PeriodicalId":18679,"journal":{"name":"Microbiology and Immunology","volume":"68 10","pages":"348-358"},"PeriodicalIF":1.9,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142140554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Issue Information – Cover","authors":"","doi":"10.1111/1348-0421.13168","DOIUrl":"10.1111/1348-0421.13168","url":null,"abstract":"<p><b>Cover photograph</b>: TMST of 11 STs identified from 41 E. faecium isolates. Each circle represents an ST, and the number in the middle of each circle represents the ST number. The size of each circle correlates with the number of isolates of that ST. Coloured pie charts indicate ABPC susceptibility and its proportion within each ST. The number of locus variants of seven loci that determine the STs between two circles is indicated by the number above the line connecting these circles. <i>Microbiol Immunol: 68:254-266</i>. Article link here\u0000 \u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":18679,"journal":{"name":"Microbiology and Immunology","volume":"68 8","pages":"i-ii"},"PeriodicalIF":1.9,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1348-0421.13168","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141931617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chie Aoki-Utsubo, Masanori Kameoka, Lin Deng, Muhammad Hanafi, Beti Ernawati Dewi, Pratiwi Sudarmono, Takaji Wakita, Hak Hotta
{"title":"Statins enhance extracellular release of hepatitis C virus particles through ERK5 activation","authors":"Chie Aoki-Utsubo, Masanori Kameoka, Lin Deng, Muhammad Hanafi, Beti Ernawati Dewi, Pratiwi Sudarmono, Takaji Wakita, Hak Hotta","doi":"10.1111/1348-0421.13166","DOIUrl":"10.1111/1348-0421.13166","url":null,"abstract":"<p>Statins, such as lovastatin, have been known to inhibit 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase. Statins were reported to moderately suppress hepatitis C virus (HCV) replication in cultured cells harboring HCV RNA replicons. We report here using an HCV cell culture (HCVcc) system that high concentrations of lovastatin (5–20 μg/mL) markedly enhanced the release of HCV infectious particles (virion) in the culture supernatants by up to 40 times, without enhancing HCV RNA replication, HCV protein synthesis, or HCV virion assembly in the cells. We also found that lovastatin increased the phosphorylation (activation) level of extracellular-signal-regulated kinase 5 (ERK5) in both the infected and uninfected cells in a dose-dependent manner. The lovastatin-mediated increase of HCV virion release was partially reversed by selective ERK5 inhibitors, BIX02189 and XMD8-92, or by ERK5 knockdown using small interfering RNA (siRNA). Moreover, we demonstrated that other cholesterol-lowering statins, but not dehydrolovastatin that is incapable of inhibiting HMG-CoA reductase and activating ERK5, enhanced HCV virion release to the same extent as observed with lovastatin. These results collectively suggest that statins markedly enhance HCV virion release from infected cells through HMG-CoA reductase inhibition and ERK5 activation.</p>","PeriodicalId":18679,"journal":{"name":"Microbiology and Immunology","volume":"68 10","pages":"359-370"},"PeriodicalIF":1.9,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141788623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Construction of knockout mutants in Mycobacterium intracellulare ATCC13950 strain using a thermosensitive plasmid containing negative selection marker rpsL+","authors":"Yoshitaka Tateishi, Akihito Nishiyama, Yuriko Ozeki, Sohkichi Matsumoto","doi":"10.1111/1348-0421.13167","DOIUrl":"10.1111/1348-0421.13167","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Background</h3>\u0000 \u0000 <p>Nontuberculous mycobacterial disease has emerged worldwide over the past 20 years. However, there are currently few reports on the established technique for constructing knockout mutants of nontuberculous mycobacteria. Therefore, gene recombination techniques for nontuberculous mycobacteria require further research.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>We constructed vector pPR23LHR that harbors the ribosomal protein S12 gene (<i>rpsL</i><sup><i>+</i></sup>) as a dominant negative selection marker and the hygromycin (Hyg) and <i>lacZ</i> cassettes as positive selection markers. We constructed knockout mutants of proteasomal genes, which we found to be required for hypoxic pellicle formation in <i>Mycobacterium intracellulare</i> by functional genomic analysis. The knockout mutants showed impaired hypoxic pellicle formation, consistent with previous data using epoxomicin, a proteasomal inhibitor.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusions</h3>\u0000 \u0000 <p>Our findings demonstrate that <i>rpsL</i><sup><i>+</i></sup> is an efficient dominant negative selection marker for gene recombination in nontuberculous mycobacteria. Our temperature-sensitive <i>rpsL</i><sup>+</sup> method for the construction of knockout mutants will facilitate functional assays to validate the virulence factors of nontuberculous mycobacteria and the pathogenesis of nontuberculous mycobacterial disease.</p>\u0000 </section>\u0000 </div>","PeriodicalId":18679,"journal":{"name":"Microbiology and Immunology","volume":"68 10","pages":"339-347"},"PeriodicalIF":1.9,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1348-0421.13167","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141748576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Discovery of a novel spotted fever group Rickettsia, “Candidatus Rickettsia kedanie,” in unfed larval chigger mites, Leptotrombidium scutellare","authors":"Motohiko Ogawa, Minenosuke Matsutani, Takashi Katayama, Nobuhiro Takada, Shinichi Noda, Mamoru Takahashi, Daisuke Kageyama, Nozomu Hanaoka, Hideki Ebihara","doi":"10.1111/1348-0421.13161","DOIUrl":"10.1111/1348-0421.13161","url":null,"abstract":"<p>Spotted fever group (SFG) rickettsia, the causative agent of SFG rickettsiosis, is predominantly carried by ticks, whereas <i>Orientia tsutusgamushi</i>, the causative agent of scrub typhus, is primarily transmitted by chigger mites in Japan. In this study, we attempted to isolate intracellular eubacteria from <i>Leptotrombidium scutellare</i>, a major vector of <i>O. tsutsugamushi</i>; moreover, we isolated an SFG rickettsia using a mosquito-derived cell line. Draft genome sequences of this unique isolate, by applying criteria for species delimitation, classified this isolate as a novel strain, proposed as “<i>Rickettsia kedanie</i>.” Further genetic analysis identified conserved virulence factors, and the isolate successfully propagated in mammalian cells, suggesting its ability to cause diseases in humans. The presence of SFG rickettsia in unfed larvae implies potential dual-pathogen carriage and reflects a symbiotic relationship similar to that between the mites and <i>O. tsutsugamushi</i>, indicating possibility of its transovarial transmission from female adults. Furthermore, conserved genomic similarity of the novel isolate to known SFG rickettsia suggests potential multiple hosts, including chiggers and ticks. In the natural environment, ticks, chigger mites, and wild animals may carry new isolates, complicating the infection cycle and increasing the transmission risks to humans. This discovery challenges the conventional association of SFG rickettsia with ticks, emphasizing its implications for research and disease control. However, this study was confined to a particular species of chigger mites and geographic area, underscoring the necessity for additional studies to comprehend the ecological dynamics, host interactions, and health implications linked to this newly identified SFG rickettsia.</p>","PeriodicalId":18679,"journal":{"name":"Microbiology and Immunology","volume":"68 9","pages":"295-304"},"PeriodicalIF":1.9,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141559220","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}