Microbiology and Immunology最新文献

筛选
英文 中文
A fungal-binding agglutinin in the skin slime of Japanese flounder (Paralichthys olivaceus) is glyceraldehyde 3-phosphate dehydrogenase 日本鲽(Paralichthys olivaceus)皮肤粘液中的一种真菌结合凝集素是 3-磷酸甘油醛脱氢酶。
IF 1.9 4区 医学
Microbiology and Immunology Pub Date : 2024-06-24 DOI: 10.1111/1348-0421.13163
Shigeyuki Tsutsui, Mizuki Terashima, Osamu Nakamura
{"title":"A fungal-binding agglutinin in the skin slime of Japanese flounder (Paralichthys olivaceus) is glyceraldehyde 3-phosphate dehydrogenase","authors":"Shigeyuki Tsutsui,&nbsp;Mizuki Terashima,&nbsp;Osamu Nakamura","doi":"10.1111/1348-0421.13163","DOIUrl":"10.1111/1348-0421.13163","url":null,"abstract":"<p>Agglutination of pathogenic microorganisms on the body surface is a significant phenomenon for the prevention of infection. In the present study, we show that an extract of the skin mucus from Japanese flounder (<i>Paralichthys olivaceus</i>) has agglutination activity against the yeast <i>Saccharomyces cerevisiae</i>. We purified this yeast-binding protein, which consists of an approximately 35-kDa homodimer, using affinity chromatography with yeast as a ligand. Multiple internal amino acid sequences of the protein, as determined using liquid chromatography with quadrupole time-of-flight tandem mass spectrometry, mapped to flounder glyceraldehyde 3-phosphate dehydrogenase (GAPDH). An anti-GAPDH antibody inhibited the yeast agglutination activity in the skin mucus extract and stained agglutinated yeast, indicating that flounder GAPDH could agglutinate yeast. The current study suggests that GAPDH, a well-known protein as the sixth enzyme in the glycolytic pathway, is a significant player in mucosal immunity in teleosts.</p>","PeriodicalId":18679,"journal":{"name":"Microbiology and Immunology","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141458100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Epigallocatechin-3-gallate ameliorates lipopolysaccharide-induced acute thymus involution in mice via AMPK/Sirt1 pathway 表没食子儿茶素-3-棓酸盐通过AMPK/Sirt1途径改善脂多糖诱导的小鼠急性胸腺萎缩。
IF 1.9 4区 医学
Microbiology and Immunology Pub Date : 2024-06-17 DOI: 10.1111/1348-0421.13159
Qing Su, Shu-Ping Yang, Jun-Ping Guo, Yi-Ren Rong, Yun Sun, Yu-Rong Chai
{"title":"Epigallocatechin-3-gallate ameliorates lipopolysaccharide-induced acute thymus involution in mice via AMPK/Sirt1 pathway","authors":"Qing Su,&nbsp;Shu-Ping Yang,&nbsp;Jun-Ping Guo,&nbsp;Yi-Ren Rong,&nbsp;Yun Sun,&nbsp;Yu-Rong Chai","doi":"10.1111/1348-0421.13159","DOIUrl":"10.1111/1348-0421.13159","url":null,"abstract":"<p>The thymus, a site to culture the naïve T lymphocytes, is susceptible to atrophy or involution due to aging, inflammation, and oxidation. Epigallocatechin-3-gallate (EGCG) has been proven to possess anti-inflammatory, antioxidant, and antitumor activity. Here, we investigate the effects of EGCG on thymic involution induced by lipopolysaccharide (LPS), an endotoxin derived from Gram-negative bacteria. The methodology included an in vivo experiment on female Kunming mice exposed to LPS and EGCG. Morphological assessment of thymic involution, immunohistochemical detection, and thymocyte subsets analysis by flow cytometry were further carried out to evaluate the potential role of EGCG on the thymus. As a result, we found that EGCG alleviated LPS-induced thymic atrophy, increased mitochondrial membrane potential and superoxide dismutase levels, and decreased malondialdehyde and reactive oxygen species levels. In addition, EGCG pre-supplement restored the ratio of thymocyte subsets, the expression of autoimmune regulator, sex-determining region Y-box 2, and Nanog homebox, and reduced the number of senescent cells and collagen fiber deposition. Western blotting results indicated that EGCG treatment elevated LPS-induced decrease in pAMPK, Sirt1 protein expression. Collectively, EGCG relieved thymus architecture and function damaged by LPS via regulation of AMPK/Sirt1 signaling pathway. Our findings may provide a new strategy on protection of thymus from involution caused by LPS by using EGCG. And EGCG might be considered as a potential agent for the prevention and treatment of thymic involution.</p>","PeriodicalId":18679,"journal":{"name":"Microbiology and Immunology","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141419878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Antibiotic susceptibility and genome analysis of Enterococcus species isolated from inpatients in one hospital with no apparent outbreak of vancomycin-resistant Enterococcus in Japan 日本一家未明显爆发耐万古霉素肠球菌疫情的医院从住院病人中分离的肠球菌的抗生素敏感性和基因组分析。
IF 1.9 4区 医学
Microbiology and Immunology Pub Date : 2024-06-14 DOI: 10.1111/1348-0421.13155
Ayumi Fujii, Miki Kawada-Matsuo, Mi Nguyen-Tra Le, Kanako Masuda, Kayoko Tadera, Yujin Suzuki, Saki Nishihama, Junzo Hisatsune, Yo Sugawara, Seiya Kashiyama, Hideki Shiba, Tomonao Aikawa, Hiroki Ohge, Motoyuki Sugai, Hitoshi Komatsuzawa
{"title":"Antibiotic susceptibility and genome analysis of Enterococcus species isolated from inpatients in one hospital with no apparent outbreak of vancomycin-resistant Enterococcus in Japan","authors":"Ayumi Fujii,&nbsp;Miki Kawada-Matsuo,&nbsp;Mi Nguyen-Tra Le,&nbsp;Kanako Masuda,&nbsp;Kayoko Tadera,&nbsp;Yujin Suzuki,&nbsp;Saki Nishihama,&nbsp;Junzo Hisatsune,&nbsp;Yo Sugawara,&nbsp;Seiya Kashiyama,&nbsp;Hideki Shiba,&nbsp;Tomonao Aikawa,&nbsp;Hiroki Ohge,&nbsp;Motoyuki Sugai,&nbsp;Hitoshi Komatsuzawa","doi":"10.1111/1348-0421.13155","DOIUrl":"10.1111/1348-0421.13155","url":null,"abstract":"<p>To prevent nosocomial infection, it is important to screen for potential vancomycin-resistant <i>Enterococcus</i> (VRE) among patients. In this study, we analyzed enterococcal isolates from inpatients in one hospital without any apparent outbreak of VRE. Enterococcal isolates were collected from inpatients at Hiroshima University Hospital from April 1 to June 30, 2021 using selective medium for Enterococci. Multilocus sequence typing, antimicrobial susceptibility testing, and whole-genome sequencing were performed. A total of 164 isolates, including <i>Enterococcus faecium</i> (41 isolates), <i>Enterococcus faecalis</i> (80 isolates), <i>Enterococcus raffinosus</i> (11 isolates), <i>Enterococcus casseliflavus</i> (nine isolates), <i>Enterococcus avium</i> (12 isolates), <i>Enterococcus lactis</i> (eight isolates), <i>Enterococcus gallinarum</i> (two isolates), and <i>Enterococcus malodoratus</i> (one isolate), were analyzed. We found one <i>vanA</i>-positive <i>E. faecium</i>, which was already informed when the patient was transferred to the hospital, nine <i>vanC</i>-positive <i>E. casseliflavus</i>, and two <i>vanC</i>-positive <i>E. gallinarum. E. faecium</i> isolates showed resistance to ampicillin (95.1%), imipenem (95.1%), and levofloxacin (87.8%), and <i>E. faecalis</i> isolates showed resistance to minocycline (49.4%). Ampicillin- and levofloxacin-resistant <i>E. faecium</i> had multiple mutations in penicillin-binding protein 5 (PBP5) (39/39 isolates) and ParC/GyrA (21/36 isolates), respectively. <i>E. raffinosus</i> showed resistance to ampicillin (81.8%), imipenem (45.5%), and levofloxacin (45.5%), and <i>E. lactis</i> showed resistance to ampicillin (37.5%) and imipenem (50.0%). The linezolid resistance genes <i>optrA</i> and <i>cfr</i>(B) were found only in one isolate of <i>E. faecalis</i> and <i>E. raffinosus</i>, respectively. This study, showing the status of enterococci infection in hospitalized patients, is one of the important information when considering nosocomial infection control of VRE.</p>","PeriodicalId":18679,"journal":{"name":"Microbiology and Immunology","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141317675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Issue Information – Cover 发行信息 - 封面
IF 2.6 4区 医学
Microbiology and Immunology Pub Date : 2024-06-05 DOI: 10.1111/1348-0421.13158
{"title":"Issue Information – Cover","authors":"","doi":"10.1111/1348-0421.13158","DOIUrl":"https://doi.org/10.1111/1348-0421.13158","url":null,"abstract":"<p><b>Cover photograph</b>: LEfSe analysis of fecal microbiota. <i>Microbiol Immunol: 68:206-211</i>. Article link here\u0000 \u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":18679,"journal":{"name":"Microbiology and Immunology","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1348-0421.13158","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141251247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Involvement of SARS-CoV-2 accessory proteins in immunopathogenesis SARS-CoV-2 辅助蛋白参与免疫发病机制。
IF 1.9 4区 医学
Microbiology and Immunology Pub Date : 2024-06-04 DOI: 10.1111/1348-0421.13157
Hayato Ito, Tomokazu Tamura, Lei Wang, Kento Mori, Masumi Tsuda, Rigel Suzuki, Saori Suzuki, Kumiko Yoshimatsu, Shinya Tanaka, Takasuke Fukuhara
{"title":"Involvement of SARS-CoV-2 accessory proteins in immunopathogenesis","authors":"Hayato Ito,&nbsp;Tomokazu Tamura,&nbsp;Lei Wang,&nbsp;Kento Mori,&nbsp;Masumi Tsuda,&nbsp;Rigel Suzuki,&nbsp;Saori Suzuki,&nbsp;Kumiko Yoshimatsu,&nbsp;Shinya Tanaka,&nbsp;Takasuke Fukuhara","doi":"10.1111/1348-0421.13157","DOIUrl":"10.1111/1348-0421.13157","url":null,"abstract":"<p>Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the largest single-stranded RNA virus known to date. Its genome contains multiple accessory protein genes that act against host immune responses but are not required for progeny virus production. The functions of the accessory proteins in the viral life cycle have been examined, but their involvement in viral pathogenicity remains unclear. Here, we investigated the roles of the accessory proteins in viral immunopathogenicity. To this end, recombinant SARS-CoV-2 possessing nonsense mutations in the seven accessory protein open reading frames (ORFs) (ORF3a, ORF3b, ORF6, ORF7a, ORF8, ORF9b, and ORF10) was de novo generated using an early pandemic SARS-CoV-2 strain as a backbone. We confirmed that the resultant virus (termed ORF3–10 KO) did not express accessory proteins in infected cells and retained the desired mutations in the viral genome. In cell culture, the ORF3–10 KO virus exhibited similar virus growth kinetics as the parental virus. In hamsters, ORF3–10 KO virus infection resulted in mild weight loss and reduced viral replication in the oral cavity and lung tissue. ORF3–10 KO virus infection led to mild inflammation, indicating that an inability to evade innate immune sensing because of a lack of accessory proteins impairs virus growth in vivo and results in quick elimination from the body. Overall, we showed that SARS-CoV-2 accessory proteins are involved in immunopathogenicity.</p>","PeriodicalId":18679,"journal":{"name":"Microbiology and Immunology","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141261842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biofilm-derived membrane vesicles exhibit potent immunomodulatory activity in Pseudomonas aeruginosa PAO1 生物膜衍生的膜囊泡对铜绿假单胞菌 PAO1 表现出强大的免疫调节活性。
IF 1.9 4区 医学
Microbiology and Immunology Pub Date : 2024-05-26 DOI: 10.1111/1348-0421.13156
Minato Takahara, Satoru Hirayama, Hiroyuki Futamata, Ryoma Nakao, Yosuke Tashiro
{"title":"Biofilm-derived membrane vesicles exhibit potent immunomodulatory activity in Pseudomonas aeruginosa PAO1","authors":"Minato Takahara,&nbsp;Satoru Hirayama,&nbsp;Hiroyuki Futamata,&nbsp;Ryoma Nakao,&nbsp;Yosuke Tashiro","doi":"10.1111/1348-0421.13156","DOIUrl":"10.1111/1348-0421.13156","url":null,"abstract":"<p>Pathogenic bacteria form biofilms on epithelial cells, and most bacterial biofilms show increased production of membrane vesicles (MVs), also known as outer membrane vesicles in Gram-negative bacteria. Numerous studies have investigated the MVs released under planktonic conditions; however, the impact of MVs released from biofilms on immune responses remains unclear. This study aimed to investigate the characteristics and immunomodulatory activity of MVs obtained from both planktonic and biofilm cultures of <i>Pseudomonas aeruginosa</i> PAO1. The innate immune responses of macrophages to planktonic-derived MVs (p-MVs) and biofilm-derived MVs (b-MVs) were investigated by measuring the mRNA expression of proinflammatory cytokines. Our results showed that b-MVs induced a higher expression of inflammatory cytokines, including <i>Il1b</i>, <i>Il6</i>, and <i>Il12p40</i>, than p-MVs. The mRNA expression levels of Toll-like receptor 4 (<i>Tlr4</i>) differed between the two types of MVs, but not <i>Tlr2</i>. Polymyxin B significantly neutralized b-MV-mediated cytokine induction, suggesting that lipopolysaccharide of native b-MVs is the origin of the immune response. In addition, heat-treated or homogenized b-MVs induced the mRNA expression of cytokines, including <i>Tnfa</i>, <i>Il1b</i>, <i>Il6</i>, and <i>Il12p40</i>. Heat treatment of MVs led to increased expression of <i>Tlr2</i> but not <i>Tlr4</i>, suggesting that TLR2 ligands play a role in detecting the pathogen-associated molecular patterns in lysed MVs. Taken together, our data indicate that potent immunomodulatory MVs are produced in <i>P. aeruginosa</i> biofilms and that this behavior could be a strategy for the bacteria to infect host cells. Furthermore, our findings would contribute to developing novel vaccines using MVs.</p>","PeriodicalId":18679,"journal":{"name":"Microbiology and Immunology","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1348-0421.13156","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141155582","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The prevention effect of Limosilactobacillus reuteri on acute kidney injury by regulating gut microbiota 通过调节肠道微生物群来预防急性肾损伤的Limosilactobacillus reuteri。
IF 1.9 4区 医学
Microbiology and Immunology Pub Date : 2024-05-15 DOI: 10.1111/1348-0421.13130
Zhan Yang, Juan Ni, Xuewei Sun, Qian Cui, Xinrui Zhang, Mingyan Zhang, Xiaojing Zhu, Zihan Wu, Chengliang Tang, Jingfeng Zhu, Huijuan Mao, Kang Liu, Chunhui Wang, Changying Xing, Jin Zhu
{"title":"The prevention effect of Limosilactobacillus reuteri on acute kidney injury by regulating gut microbiota","authors":"Zhan Yang,&nbsp;Juan Ni,&nbsp;Xuewei Sun,&nbsp;Qian Cui,&nbsp;Xinrui Zhang,&nbsp;Mingyan Zhang,&nbsp;Xiaojing Zhu,&nbsp;Zihan Wu,&nbsp;Chengliang Tang,&nbsp;Jingfeng Zhu,&nbsp;Huijuan Mao,&nbsp;Kang Liu,&nbsp;Chunhui Wang,&nbsp;Changying Xing,&nbsp;Jin Zhu","doi":"10.1111/1348-0421.13130","DOIUrl":"10.1111/1348-0421.13130","url":null,"abstract":"<p>Acute kidney injury (AKI) has considerably high morbidity and mortality but we do not have proper treatment for it. There is an urgent need to develop new prevention or treatment methods. Gut microbiota has a close connection with renal diseases and has become the new therapy target for AKI. In this study, we found the oral administration of the probiotic <i>Limosilactobacillus reuteri</i> had a prevention effect on the AKI induced by lipopolysaccharide (LPS). It reduced serum concentration of creatinine and urea nitrogen and protected the renal cells from necrosis and apoptosis. Meanwhile, <i>L. reuteri</i> improved the gut barrier function, which is destroyed in AKI, and modulated the gut microbiota and relevant metabolites. Compared with the LPS group, <i>L. reuteri</i> increased the proportion of Proteobacteria and reduced the proportion of Firmicutes, changing the overall structure of the gut microbiota. It also influenced the fecal metabolites and changed the metabolite pathways, such as tyrosine metabolism, pentose and glucuronate interconversions, galactose metabolism, purine metabolism, and insulin resistance. These results showed that <i>L. reuteri</i> is a potential therapy for AKI as it helps in sustaining the gut barrier integrity and modulating gut microbiota and related metabolites.</p>","PeriodicalId":18679,"journal":{"name":"Microbiology and Immunology","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140922774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Issue Information – Cover 发行信息 - 封面
IF 2.6 4区 医学
Microbiology and Immunology Pub Date : 2024-05-06 DOI: 10.1111/1348-0421.13129
{"title":"Issue Information – Cover","authors":"","doi":"10.1111/1348-0421.13129","DOIUrl":"https://doi.org/10.1111/1348-0421.13129","url":null,"abstract":"<p><b>Cover photograph</b>: Proposed model: Mutations in N-glycosylation sites at N331 and N343 residues of RBD 705 protein inhibit S-ACE2 binding, IL-6 expression and cytotoxicity. <i>Microbiol Immunol: 68:165-178</i>. Article link here\u0000 \u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":18679,"journal":{"name":"Microbiology and Immunology","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1348-0421.13129","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140844802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Possible link between colonization of the gastrointestinal tract by Citrobacter rodentium in C57BL/6 mice and microbiota composition C57BL/6 小鼠胃肠道啮齿动物柠檬杆菌定植与微生物群组成之间的可能联系。
IF 2.6 4区 医学
Microbiology and Immunology Pub Date : 2024-04-21 DOI: 10.1111/1348-0421.13128
Tsuyoshi Miki, Takeshi Haneda, Nobuhiko Okada, Masahiro Ito
{"title":"Possible link between colonization of the gastrointestinal tract by Citrobacter rodentium in C57BL/6 mice and microbiota composition","authors":"Tsuyoshi Miki,&nbsp;Takeshi Haneda,&nbsp;Nobuhiko Okada,&nbsp;Masahiro Ito","doi":"10.1111/1348-0421.13128","DOIUrl":"10.1111/1348-0421.13128","url":null,"abstract":"<p>Colonization resistance, conferred by the host's microbiota through both direct and indirect protective actions, serves to protect the host from enteric infections. Here, we identified the specific members of the gut microbiota that impact gastrointestinal colonization by <i>Citrobacter rodentium</i>, a murine pathogen causing colonic crypt hyperplasia. The gut colonization levels of <i>C. rodentium</i> in C57BL/6 mice varied among breeding facilities, probably due to differences in microbiota composition. A comprehensive analysis of the microbiota revealed that specific members of the microbiota may influence gut colonization by <i>C. rodentium</i>, thus providing a potential link between the two.</p>","PeriodicalId":18679,"journal":{"name":"Microbiology and Immunology","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140679198","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Proposal of Helicobacter higonensis sp. nov. isolated from a human clinical specimen, and emended description of Helicobacter valdiviensis Collado, 2014 从人类临床标本中分离出新的Helicobacter higonensis sp.的建议,以及对Helicobacter valdiviensis Collado, 2014的修订描述
IF 2.6 4区 医学
Microbiology and Immunology Pub Date : 2024-04-10 DOI: 10.1111/1348-0421.13127
Junko Tomida, Tohru Miyoshi-Akiyama, Ryo Kutsuna, Hiroyasu Tsutsuki, Tomohiro Sawa, Margo Cnockaert, Peter Vandamme, Yoshiaki Kawamura
{"title":"Proposal of Helicobacter higonensis sp. nov. isolated from a human clinical specimen, and emended description of Helicobacter valdiviensis Collado, 2014","authors":"Junko Tomida,&nbsp;Tohru Miyoshi-Akiyama,&nbsp;Ryo Kutsuna,&nbsp;Hiroyasu Tsutsuki,&nbsp;Tomohiro Sawa,&nbsp;Margo Cnockaert,&nbsp;Peter Vandamme,&nbsp;Yoshiaki Kawamura","doi":"10.1111/1348-0421.13127","DOIUrl":"10.1111/1348-0421.13127","url":null,"abstract":"<p>We have previously isolated a gram-negative microaerophilic strain, PAGU2000<sup>T</sup> from a patient presenting with a fever in Kumamoto Prefecture, Japan. The present study aimed to comprehensively analyze the taxonomy of the isolated strain using a polyphasic approach. The 16S rRNA gene sequence analysis indicated that the strain was a member of enterohepatic <i>Helicobacter</i>. The strain PAGU2000<sup>T</sup> shared a 97.5% 16S rRNA gene nucleotide identity with <i>Helicobacter valdiviensis</i>, and this taxonomic position was confirmed by phylogenetic analysis of the GyrA amino acid sequences. The proposed strain PAGU2000<sup>T</sup> has a 1.482 Mbp chromosome with a DNA G + C content of 31.3 mol% and encodes 1520 predicted coding sequences. The average nucleotide identity between the strain PAGU2000<sup>T</sup> and type strain of <i>H. valdiviensis</i> was 70.3%, which was lower than the recommended threshold of 95% for species delineation. The strain PAGU2000<sup>T</sup> was a motile, non-spore-forming, and spiral-shaped bacterium, exhibiting catalase and oxidase activities but not urease and nitrate reduction. This study demonstrates that the isolate represents a novel species within enterohepatic <i>Helicobacter</i>, for which the name <i>Helicobacter higonensis</i> is proposed (type strain: PAGU2000<sup>T</sup> = GTC 16811<sup>T</sup> = LMG 33095<sup>T</sup>). In this study, we describe the phenotypic and morphological features of this strain and propose an emended description of some biochemical traits of <i>H. valdiviensis</i>.</p>","PeriodicalId":18679,"journal":{"name":"Microbiology and Immunology","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140579812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信