Methods in enzymologyPub Date : 2024-01-01Epub Date: 2024-02-07DOI: 10.1016/bs.mie.2024.01.011
Houchao Xu, Jeroen S Dickschat
{"title":"Isotopic labelings for mechanistic studies.","authors":"Houchao Xu, Jeroen S Dickschat","doi":"10.1016/bs.mie.2024.01.011","DOIUrl":"https://doi.org/10.1016/bs.mie.2024.01.011","url":null,"abstract":"<p><p>The intricate mechanisms in the biosynthesis of terpenes belong to the most challenging problems in natural product chemistry. Methods to address these problems include the structure-based site-directed mutagenesis of terpene synthases, computational approaches, and isotopic labeling experiments. The latter approach has a long tradition in biosynthesis studies and has recently experienced a revival, after genome sequencing enabled rapid access to biosynthetic genes and enzymes. Today, this allows for a combined approach in which isotopically labeled substrates can be incubated with recombinant terpene synthases. These clearly defined reaction setups can give detailed mechanistic insights into the reactions catalyzed by terpene synthases, and recent developments have substantially deepened our understanding of terpene biosynthesis. This chapter will discuss the state of the art and introduce some of the most important methods that make use of isotopic labelings in mechanistic studies on terpene synthases.</p>","PeriodicalId":18662,"journal":{"name":"Methods in enzymology","volume":"699 ","pages":"163-186"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141469491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Methods in enzymologyPub Date : 2024-01-01Epub Date: 2024-04-04DOI: 10.1016/bs.mie.2024.03.008
Jesse W Sandberg, Ezry Santiago-McRae, Jahmal Ennis, Grace Brannigan
{"title":"The density-threshold affinity: Calculating lipid binding affinities from unbiased coarse-grained molecular dynamics simulations.","authors":"Jesse W Sandberg, Ezry Santiago-McRae, Jahmal Ennis, Grace Brannigan","doi":"10.1016/bs.mie.2024.03.008","DOIUrl":"https://doi.org/10.1016/bs.mie.2024.03.008","url":null,"abstract":"<p><p>Many membrane proteins are sensitive to their local lipid environment. As structural methods for membrane proteins have improved, there is growing evidence of direct, specific binding of lipids to protein surfaces. Unfortunately the workhorse of understanding protein-small molecule interactions, the binding affinity for a given site, is experimentally inaccessible for these systems. Coarse-grained molecular dynamics simulations can be used to bridge this gap, and are relatively straightforward to learn. Such simulations allow users to observe spontaneous binding of lipids to membrane proteins and quantify localized densities of individual lipids or lipid fragments. In this chapter we outline a protocol for extracting binding affinities from these localized distributions, known as the \"density threshold affinity.\" The density threshold affinity uses an adaptive and flexible definition of site occupancy that alleviates the need to distinguish between \"bound'' lipids and bulk lipids that are simply diffusing through the site. Furthermore, the method allows \"bead-level\" resolution that is suitable for the case where lipids share binding sites, and circumvents ambiguities about a relevant reference state. This approach provides a convenient and straightforward method for comparing affinities of a single lipid species for multiple sites, multiple lipids for a single site, and/or a single lipid species modeled using multiple forcefields.</p>","PeriodicalId":18662,"journal":{"name":"Methods in enzymology","volume":"701 ","pages":"47-82"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141723933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Methods in enzymologyPub Date : 2024-01-01Epub Date: 2024-04-15DOI: 10.1016/bs.mie.2024.03.016
Christopher T Lee, Padmini Rangamani
{"title":"Modeling the mechanochemical feedback for membrane-protein interactions using a continuum mesh model.","authors":"Christopher T Lee, Padmini Rangamani","doi":"10.1016/bs.mie.2024.03.016","DOIUrl":"https://doi.org/10.1016/bs.mie.2024.03.016","url":null,"abstract":"<p><p>The Helfrich free energy is widely used to model the generation of membrane curvature due to different physical and chemical components. The governing equations resulting from the energy minimization procedure are a system of coupled higher order partial differential equations. Simulations of membrane deformation for obtaining quantitative comparisons against experimental observations require computational schemes that will allow us to solve these equations without restrictions to axisymmetric coordinates. Here, we describe one such tool that we developed in our group based on discrete differential geometry to solve these equations along with examples.</p>","PeriodicalId":18662,"journal":{"name":"Methods in enzymology","volume":"701 ","pages":"387-424"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141723926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Methods in enzymologyPub Date : 2024-01-01Epub Date: 2024-04-16DOI: 10.1016/bs.mie.2024.01.023
Shilong Yang, Zheng Shi
{"title":"Quantification of membrane geometry and protein sorting on cell membrane protrusions using fluorescence microscopy.","authors":"Shilong Yang, Zheng Shi","doi":"10.1016/bs.mie.2024.01.023","DOIUrl":"https://doi.org/10.1016/bs.mie.2024.01.023","url":null,"abstract":"<p><p>Plasma membranes are flexible and can exhibit numerous shapes below the optical diffraction limit. The shape of cell periphery can either induce or be a product of local protein density changes, encoding numerous cellular functions. However, quantifying membrane curvature and the ensuing sorting of proteins in live cells remains technically demanding. Here, we demonstrate the use of simple widefield fluorescence microscopy to study the geometrical properties (i.e., radius, length, and number) of thin membrane protrusions. Importantly, the quantification of protrusion radius establishes a platform for studying the curvature preferences of membrane proteins.</p>","PeriodicalId":18662,"journal":{"name":"Methods in enzymology","volume":"700 ","pages":"385-411"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141545053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Methods in enzymologyPub Date : 2024-01-01Epub Date: 2024-04-23DOI: 10.1016/bs.mie.2024.02.008
Eulalie Lafarge, Carlos M Marques, Marc Schmutz, Pierre Muller, André P Schroder
{"title":"Thickness determination of hydroperoxidized lipid bilayers from medium-resolution cryo-TEM images.","authors":"Eulalie Lafarge, Carlos M Marques, Marc Schmutz, Pierre Muller, André P Schroder","doi":"10.1016/bs.mie.2024.02.008","DOIUrl":"https://doi.org/10.1016/bs.mie.2024.02.008","url":null,"abstract":"<p><p>As the primary products of lipid oxidation, lipid hydroperoxides constitute an important class of lipids generated by aerobic metabolism. However, despite several years of effort, the structure of the hydroperoxidized bilayer has not yet been observed under electron microscopy. Here we use a 200 kV Cryo-TEM to image small unilamellar vesicles (SUVs) made (i) of pure POPC or SOPC, (ii) of their pure hydroperoxidized form, and (iii) of their equimolar mixtures. We show that the challenges posed by the determination of the thickness of the hydroperoxidized bilayers under these observation conditions can be addressed by an image analysis method that we developed and describe here.</p>","PeriodicalId":18662,"journal":{"name":"Methods in enzymology","volume":"700 ","pages":"329-348"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141545061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Methods in enzymologyPub Date : 2024-01-01Epub Date: 2024-03-05DOI: 10.1016/bs.mie.2024.02.009
Larissa Socrier, Claudia Steinem
{"title":"Pore-spanning membranes as a tool to investigate lateral lipid membrane heterogeneity.","authors":"Larissa Socrier, Claudia Steinem","doi":"10.1016/bs.mie.2024.02.009","DOIUrl":"https://doi.org/10.1016/bs.mie.2024.02.009","url":null,"abstract":"<p><p>Over the years, it has become more and more obvious that lipid membranes show a very complex behavior. This behavior arises in part from the large number of different kinds of lipids and proteins and how they dynamically interact with each other. In vitro studies using artificial membrane systems have shed light on the heterogeneity based on lipid-lipid interactions in multicomponent bilayer mixtures. Inspired by the raft hypothesis, the coexistence of liquid-disordered (l<sub>d</sub>) and liquid-ordered (l<sub>o</sub>) phases has drawn much attention. It was shown that ternary lipid mixtures containing low- and high-melting temperature lipids and cholesterol can phase separate into a l<sub>o</sub> phase enriched in the high-melting lipids and cholesterol and a l<sub>d</sub> phase enriched in the low-melting lipids. Depending on the model membrane system under investigation, different domain sizes, shapes, and mobilities have been found. Here, we describe how to generate phase-separated l<sub>o</sub>/l<sub>d</sub> phases in model membrane systems termed pore-spanning membranes (PSMs). These PSMs are prepared on porous silicon substrates with pore sizes in the micrometer regime. A proper functionalization of the top surface of the substrates is required to achieve the spreading of giant unilamellar vesicles (GUVs) to obtain PSMs. Starting with l<sub>o</sub>/l<sub>d</sub> phase-separated GUVs lead to membrane heterogeneities in the PSMs. Depending on the functionalization strategy of the top surface of the silicon substrate, different membrane heterogeneities are observed in the PSMs employing fluorescence microscopy. A quantitative analysis of the heterogeneity as well as the dynamics of the lipid domains is described.</p>","PeriodicalId":18662,"journal":{"name":"Methods in enzymology","volume":"700 ","pages":"455-483"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141545036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Methods in enzymologyPub Date : 2024-01-01Epub Date: 2024-04-06DOI: 10.1016/bs.mie.2024.03.025
Thais A Enoki
{"title":"The use of hemifusion to create asymmetric giant unilamellar vesicles: Insights on induced order domains.","authors":"Thais A Enoki","doi":"10.1016/bs.mie.2024.03.025","DOIUrl":"https://doi.org/10.1016/bs.mie.2024.03.025","url":null,"abstract":"<p><p>The natural asymmetry of the lipid bilayer in biological membranes is, in part, a testament to the complexity of the structure and function of this barrier limiting and protecting cells (or organelles). These lipid bilayers consist of two lipid leaflets with different lipid compositions, resulting in unique interactions within each leaflet. These interactions, combined with interactions between the two leaflets, determine the overall behavior of the membrane. Model membranes provide the most suitable option for investigating the fundamental interactions of lipids. This report describes a comprehensive method to make asymmetric giant unilamellar vesicles (aGUVs) using the technique of hemifusion. In this method, calcium ions induce the hemifusion of giant unilamellar vesicles (GUVs) with a supported lipid bilayer (SLB), both having different lipid compositions. During hemifusion, a stalk, or a more commonly seen hemifusion diaphragm, connects the outer leaflets of GUVs and the SLB. The lateral diffusion of lipids naturally promotes the lipid exchange between the connected outer leaflets. After calcium chelation to prevent further fusion, a mechanical shear detaches aGUVs from the SLB. A fluorescence quench assay is employed to test the extent of bilayer asymmetry. A fluorescence quenching assay tests bilayer asymmetry and verifies dye and lipid migration to a GUV's outer leaflet.</p>","PeriodicalId":18662,"journal":{"name":"Methods in enzymology","volume":"700 ","pages":"127-159"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141545060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Radical fluorine transfer catalysed by an engineered nonheme iron enzyme.","authors":"Qun Zhao, Zhenhong Chen, Jinyan Rui, Xiongyi Huang","doi":"10.1016/bs.mie.2024.03.004","DOIUrl":"10.1016/bs.mie.2024.03.004","url":null,"abstract":"<p><p>Nonheme iron enzymes stand out as one of the most versatile biocatalysts for molecular functionalization. They facilitate a wide array of chemical transformations within biological processes, including hydroxylation, chlorination, epimerization, desaturation, cyclization, and more. Beyond their native biological functions, these enzymes possess substantial potential as powerful biocatalytic platforms for achieving abiological metal-catalyzed reactions, owing to their functional and structural diversity and high evolvability. To this end, our group has recently engineered a series of nonheme iron enzymes to employ non-natural radical-relay mechanisms for abiological radical transformations not previously known in biology. Notably, we have demonstrated that a nonheme iron enzyme, (S)-2-hydroxypropylphosphonate epoxidase from Streptomyces viridochromogenes (SvHppE), can be repurposed into an efficient and selective biocatalyst for radical fluorine transfer reactions. This marks the first known instance of a redox enzymatic process for C(sp<sup>3</sup>)F bond formation. This chapter outlines the detailed experimental protocol for engineering SvHPPE for fluorination reactions. Furthermore, the provided protocol could serve as a general guideline that might facilitate other engineering endeavors targeting nonheme iron enzymes for novel catalytic functions.</p>","PeriodicalId":18662,"journal":{"name":"Methods in enzymology","volume":"696 ","pages":"231-247"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11232670/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140868444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Methods in enzymologyPub Date : 2024-01-01Epub Date: 2024-03-21DOI: 10.1016/bs.mie.2024.01.016
Liam R Marshall, Olga V Makhlynets
{"title":"Stopped-flow measurement of CO<sub>2</sub> hydration activity by catalytic amyloids.","authors":"Liam R Marshall, Olga V Makhlynets","doi":"10.1016/bs.mie.2024.01.016","DOIUrl":"10.1016/bs.mie.2024.01.016","url":null,"abstract":"<p><p>With the ever-increasing rates of catalysis shown by catalytic amyloids, the use of faster characterization techniques is required for proper kinetic studies. The same is true for inherently fast chemical reactions. Carbon dioxide hydration is of significant interest to the field of enzyme design, given both carbonic anhydrases' status as a \"perfect enzyme\" and the central role carbonic anhydrase plays in the respiration and existence of all carbon-based life. Carbon dioxide is an underexplored hydrolysis substrate within the literature, and a lack of a direct spectroscopic marker for reaction monitoring can make studies more complex and require specialist equipment. Within this article we present a method for measuring the carbon dioxide hydration activity of amyloid fibrils.</p>","PeriodicalId":18662,"journal":{"name":"Methods in enzymology","volume":"697 ","pages":"35-49"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141180256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Methods in enzymologyPub Date : 2024-01-01Epub Date: 2024-04-27DOI: 10.1016/bs.mie.2024.04.018
Syrah K Starnes, Juan R Del Valle
{"title":"Synthesis, derivatization, and conformational scanning of peptides containing N-Aminoglycine.","authors":"Syrah K Starnes, Juan R Del Valle","doi":"10.1016/bs.mie.2024.04.018","DOIUrl":"10.1016/bs.mie.2024.04.018","url":null,"abstract":"<p><p>N-alkylated glycine residues are the main constituent of peptoids and peptoid-peptide hybrids that are employed across the biomedical and materials sciences. While the impact of backbone N-alkylation on peptide conformation has been extensively studied, less is known about the effect of N-amination on the secondary structure propensity of glycine. Here, we describe a convenient protocol for the incorporation of N-aminoglycine into host peptides on solid support. Amide-to-hydrazide substitution also affords a nucleophilic handle for further derivatization of the backbone. To demonstrate the utility of late-stage hydrazide modification, we synthesized and evaluated the stability of polyproline II helix and β-hairpin model systems harboring N-aminoglycine derivatives. The described procedures provide facile entry into peptidomimetic libraries for conformational scanning.</p>","PeriodicalId":18662,"journal":{"name":"Methods in enzymology","volume":"698 ","pages":"1-26"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11613113/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141419869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}