{"title":"Ribozyme-mediated expression of tRNA-derived small RNAs in bacteria.","authors":"Carmela Esposito, Anamaria Buzoianu, Marina Cristodero, Norbert Polacek","doi":"10.1016/bs.mie.2024.11.003","DOIUrl":null,"url":null,"abstract":"<p><p>Transfer RNA-derived RNAs (tDRs) have emerged as important regulatory molecules found across all three domains of life. Despite their discovery over four decades ago, their biological significance has only recently begun to be elucidated. However, studying bacterial tDRs poses challenges due to technical limitations in assessing their in vivo functionality. To address this, we established a novel approach utilizing a self-cleaving Twister ribozyme to express tDRs in Escherichia coli. Specifically, we employed the type P1 Sva1-1 Twister ribozyme, to generate tDRs with genuine 3' ends. Our method involves the inducible expression of tDRs by incorporating the desired tDR sequence into a plasmid construct downstream of two lac operators and upstream of the Twister ribozyme. Upon induction with IPTG and transcription of the construct, the Twister ribozyme undergoes self-cleavage, thus producing tDRs with defined 3' ends. As a proof of principle, we demonstrated the in vivo application of our novel method by expressing and analyzing two stress-induced tRNA halves in E. coli. Overall, our method offers a valuable tool for studying tDRs in bacteria to shed light on their regulatory roles in cellular processes.</p>","PeriodicalId":18662,"journal":{"name":"Methods in enzymology","volume":"711 ","pages":"65-83"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in enzymology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.mie.2024.11.003","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/4 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Transfer RNA-derived RNAs (tDRs) have emerged as important regulatory molecules found across all three domains of life. Despite their discovery over four decades ago, their biological significance has only recently begun to be elucidated. However, studying bacterial tDRs poses challenges due to technical limitations in assessing their in vivo functionality. To address this, we established a novel approach utilizing a self-cleaving Twister ribozyme to express tDRs in Escherichia coli. Specifically, we employed the type P1 Sva1-1 Twister ribozyme, to generate tDRs with genuine 3' ends. Our method involves the inducible expression of tDRs by incorporating the desired tDR sequence into a plasmid construct downstream of two lac operators and upstream of the Twister ribozyme. Upon induction with IPTG and transcription of the construct, the Twister ribozyme undergoes self-cleavage, thus producing tDRs with defined 3' ends. As a proof of principle, we demonstrated the in vivo application of our novel method by expressing and analyzing two stress-induced tRNA halves in E. coli. Overall, our method offers a valuable tool for studying tDRs in bacteria to shed light on their regulatory roles in cellular processes.
期刊介绍:
The critically acclaimed laboratory standard for almost 50 years, Methods in Enzymology is one of the most highly respected publications in the field of biochemistry. Each volume is eagerly awaited, frequently consulted, and praised by researchers and reviewers alike. Now with over 500 volumes the series contains much material still relevant today and is truly an essential publication for researchers in all fields of life sciences, including microbiology, biochemistry, cancer research and genetics-just to name a few. Five of the 2013 Nobel Laureates have edited or contributed to volumes of MIE.