{"title":"Genome mining with hypothetical proteins.","authors":"Grace E Kenney","doi":"10.1016/bs.mie.2025.04.004","DOIUrl":null,"url":null,"abstract":"<p><p>Natural products are diverse compounds made by many organisms, though bacteria, fungi, and plants are particularly prolific producers. While they have a range of biological roles, bioactive natural products have long been of interest as drug candidates. With the advent of accessible genome mining tools like antiSMASH, it is possible to search through genomes and metagenomes, identifying genes associated with natural product production and even predicting potential structures for experimentally uncharacterized compounds. However, most genome mining tools rely on similarity to previously characterized natural product pathways, and so they can fail to detect unusual or novel pathways and pathways that rely on \"hypothetical proteins\" for key biosynthetic steps. This is unfortunate, because natural products from new classes or with potentially divergent scaffolds are of particular interest in efforts to identify compounds with antibiotic and anticancer activity. This chapter will document some of the approaches that can be used to explore and develop biosynthetic hypotheses for these challenging-to-detect natural product pathways.</p>","PeriodicalId":18662,"journal":{"name":"Methods in enzymology","volume":"717 ","pages":"199-240"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in enzymology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.mie.2025.04.004","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/18 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Natural products are diverse compounds made by many organisms, though bacteria, fungi, and plants are particularly prolific producers. While they have a range of biological roles, bioactive natural products have long been of interest as drug candidates. With the advent of accessible genome mining tools like antiSMASH, it is possible to search through genomes and metagenomes, identifying genes associated with natural product production and even predicting potential structures for experimentally uncharacterized compounds. However, most genome mining tools rely on similarity to previously characterized natural product pathways, and so they can fail to detect unusual or novel pathways and pathways that rely on "hypothetical proteins" for key biosynthetic steps. This is unfortunate, because natural products from new classes or with potentially divergent scaffolds are of particular interest in efforts to identify compounds with antibiotic and anticancer activity. This chapter will document some of the approaches that can be used to explore and develop biosynthetic hypotheses for these challenging-to-detect natural product pathways.
期刊介绍:
The critically acclaimed laboratory standard for almost 50 years, Methods in Enzymology is one of the most highly respected publications in the field of biochemistry. Each volume is eagerly awaited, frequently consulted, and praised by researchers and reviewers alike. Now with over 500 volumes the series contains much material still relevant today and is truly an essential publication for researchers in all fields of life sciences, including microbiology, biochemistry, cancer research and genetics-just to name a few. Five of the 2013 Nobel Laureates have edited or contributed to volumes of MIE.