Methods in enzymology最新文献

筛选
英文 中文
Determining biosynthetic gene cluster boundaries through comparative bioinformatics. 通过比较生物信息学确定生物合成基因簇边界。
4区 生物学
Methods in enzymology Pub Date : 2025-01-01 Epub Date: 2025-05-16 DOI: 10.1016/bs.mie.2025.04.001
Jerry Cui, Kou-San Ju
{"title":"Determining biosynthetic gene cluster boundaries through comparative bioinformatics.","authors":"Jerry Cui, Kou-San Ju","doi":"10.1016/bs.mie.2025.04.001","DOIUrl":"10.1016/bs.mie.2025.04.001","url":null,"abstract":"<p><p>Modern advances in sequencing, \"-omics,\" and bioinformatics have given rise to the field of genome mining, loosely defined as the use of genomic data to guide natural product (NP) discovery. This technique applies our understanding of biosynthetic logic to predict the genes encoding for production of novel compounds. The major steps include identification of these biosynthetic gene clusters (BGCs), their classification, and prioritization for subsequent experimentation. Despite decades of effort, determination of cluster boundaries without experimental validation remains one of the greatest challenges in genome mining. Genes encoded within a BGC are the foundation for all downstream analysis. Thus, accurate determination of gene cluster content is critical for effective prioritization of BGCs and prediction of their products. Synteny, or the conservation of homologous genes and their arrangement, provides an effective solution for predicting these borders. Over evolutionary time, transfer and rearrangement of genes results in variability surrounding BGCs, such that natural breaks in conservation underlie these functional units. In this chapter, we provide a comprehensive approach for using synteny to delineate BGC boundaries.</p>","PeriodicalId":18662,"journal":{"name":"Methods in enzymology","volume":"717 ","pages":"241-265"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12281633/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144619064","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization of bacterial transporters involved in the uptake of lignin-derived aromatic compounds. 参与木质素衍生芳香族化合物摄取的细菌转运体的表征。
4区 生物学
Methods in enzymology Pub Date : 2025-01-01 Epub Date: 2025-02-18 DOI: 10.1016/bs.mie.2025.01.053
Masaya Fujita, Naofumi Kamimura, Eiji Masai
{"title":"Characterization of bacterial transporters involved in the uptake of lignin-derived aromatic compounds.","authors":"Masaya Fujita, Naofumi Kamimura, Eiji Masai","doi":"10.1016/bs.mie.2025.01.053","DOIUrl":"https://doi.org/10.1016/bs.mie.2025.01.053","url":null,"abstract":"<p><p>Chemically depolymerized low-molecular-weight lignin can be converted into polymer building blocks using bacterial convergent metabolic systems called biological funneling. Various bacterial enzyme genes involved in the catabolism of lignin-derived aromatic compounds have been identified and characterized in detail. This information is essential for developing the bioproduction of high-value-added chemicals from lignin. Transporters responsible for the first step in catabolism mediate the transport of substrates across biological membranes. Since substrate uptake in biological membranes can be an obstacle or a rate-limiting process in the bacterial production of value-added compounds, it is vital to understand not only enzyme functions but also uptake systems. In this chapter, we focus on the bacterial transporters for lignin-derived aromatic compounds that have been reported and introduce methods for the characterization of transporters, primarily through in vivo analyses. In addition, we will present an antibody-based analysis of the cellular localization of transporters.</p>","PeriodicalId":18662,"journal":{"name":"Methods in enzymology","volume":"716 ","pages":"285-312"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144294055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dye-decolorising peroxidase DyP1B from Pseudomonas fluorescens: Expression, reconstitution and reaction with polymeric lignin substrates. 荧光假单胞菌染料脱色过氧化物酶DyP1B:表达、重组和与聚合木质素底物的反应。
4区 生物学
Methods in enzymology Pub Date : 2025-01-01 Epub Date: 2025-02-09 DOI: 10.1016/bs.mie.2025.01.049
Rahman Rahmanpour, Timothy D H Bugg
{"title":"Dye-decolorising peroxidase DyP1B from Pseudomonas fluorescens: Expression, reconstitution and reaction with polymeric lignin substrates.","authors":"Rahman Rahmanpour, Timothy D H Bugg","doi":"10.1016/bs.mie.2025.01.049","DOIUrl":"https://doi.org/10.1016/bs.mie.2025.01.049","url":null,"abstract":"<p><p>Several bacterial dye-decolorising peroxidases have been identified, that have activity for oxidation of lignin model compounds and polymeric lignin. This article describes biochemical methods for lignin-oxidising peroxidase DyP1B from Pseudomonas fluorescens Pf-5. The article presents methods for: (1) enzyme purification and heme reconstitution; (2) steady-state kinetic enzyme assays; (3) pre-steady state kinetic analysis; (4) testing of the enzyme against polymeric lignin substrates.</p>","PeriodicalId":18662,"journal":{"name":"Methods in enzymology","volume":"716 ","pages":"125-141"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144294057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Expression, purification, and crystallization of "humanized" Danio rerio histone deacetylase 10 "HDAC10", the eukaryotic polyamine deacetylase. 真核生物多胺脱乙酰酶“人源化”丹尼奥河组蛋白脱乙酰酶10“HDAC10”的表达、纯化和结晶。
4区 生物学
Methods in enzymology Pub Date : 2025-01-01 Epub Date: 2025-02-11 DOI: 10.1016/bs.mie.2025.01.074
Juana Goulart Stollmaier, Corey J Herbst-Gervasoni, David W Christianson
{"title":"Expression, purification, and crystallization of \"humanized\" Danio rerio histone deacetylase 10 \"HDAC10\", the eukaryotic polyamine deacetylase.","authors":"Juana Goulart Stollmaier, Corey J Herbst-Gervasoni, David W Christianson","doi":"10.1016/bs.mie.2025.01.074","DOIUrl":"10.1016/bs.mie.2025.01.074","url":null,"abstract":"<p><p>The class IIb histone deacetylase HDAC10 is responsible for the deacetylation of intracellular polyamines, in particular N<sup>8</sup>-acetylspermidine. HDAC10 is emerging as an attractive target for drug design owing to its role as an inducer of autophagy, and high-resolution crystal structures enable structure-based drug design efforts. The only crystal structure available to date is that of HDAC10 from Danio rerio (zebrafish), but a construct containing the A24E and D94A substitutions yields an active site contour that more closely resembles that of human HDAC10. The use of this \"humanized\" construct has advanced our understanding of HDAC10-inhibitor structure-activity relationships. Here, we outline the preparation, purification, assay, and crystallization of humanized zebrafish HDAC10-inhibitor complexes. The plasmid containing the humanized zebrafish HDAC10 construct for heterologous expression in Escherichia coli is available through Addgene (#225542).</p>","PeriodicalId":18662,"journal":{"name":"Methods in enzymology","volume":"715 ","pages":"19-40"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12228987/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144094208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genome mining for natural products made by multinuclear iron-dependent oxidation enzymes (MNIOs). 多核铁依赖性氧化酶(MNIOs)天然产物的基因组挖掘。
4区 生物学
Methods in enzymology Pub Date : 2025-01-01 Epub Date: 2025-02-16 DOI: 10.1016/bs.mie.2025.01.060
Yue Yu, Wilfred A van der Donk
{"title":"Genome mining for natural products made by multinuclear iron-dependent oxidation enzymes (MNIOs).","authors":"Yue Yu, Wilfred A van der Donk","doi":"10.1016/bs.mie.2025.01.060","DOIUrl":"10.1016/bs.mie.2025.01.060","url":null,"abstract":"<p><p>Multinuclear non-heme iron-dependent oxidative enzymes (MNIOs) are a family of diiron/triiron enzymes that install post-translational modifications (PTMs) on ribosomally produced peptides. These modifications include oxazolone-thioamide formation, carbon excision, thiooxazole formation, α-keto acid formation, and N-Cα bond cleavage, demonstrating the high functional diversity of MNIOs. Many MNIOs function together with a partner protein that helps recruit the substrate peptide. This review outlines experimental methods for the expression and purification of a representative MNIO (TglH) and its peptide substrate (TglA), as well as the characterization of the resulting PTM using various spectroscopic methods and isotope labeling. These protocols can be applied to study other MNIO-encoding pathways, with case-by-case adaptations and differences highlighted. Continued genome mining of MNIOs is likely to reveal more novel enzymatic functions, advancing our understanding of their catalytic mechanisms and their roles in natural product biosynthesis.</p>","PeriodicalId":18662,"journal":{"name":"Methods in enzymology","volume":"717 ","pages":"89-117"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144619068","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
De novo design of four-helix bundle proteins to bind metalloporphyrin cofactors. 结合金属卟啉辅助因子的四螺旋束蛋白的重新设计。
4区 生物学
Methods in enzymology Pub Date : 2025-01-01 Epub Date: 2025-07-14 DOI: 10.1016/bs.mie.2025.06.038
Karen R Coronado, Yixuan Zhu, Samuel I Mann
{"title":"De novo design of four-helix bundle proteins to bind metalloporphyrin cofactors.","authors":"Karen R Coronado, Yixuan Zhu, Samuel I Mann","doi":"10.1016/bs.mie.2025.06.038","DOIUrl":"10.1016/bs.mie.2025.06.038","url":null,"abstract":"<p><p>The versatility of heme proteins in nature stems from the intricate control exerted by their protein scaffolds. De novo protein design offers a powerful means to dissect and recreate these structure-function relationships, enabling construction of novel metalloproteins with tailored functionalities. Here, we describe the computational design and characterization MPP1, a four-helix bundle protein designed to bind an abiological Mn-diphenylporphyrin (MnDPP) cofactor. Using parameterized coiled-coil backbones, flexible backbone sequence design in Rosetta, and structure-guided loop building, MPP1 was designed to accommodate the cofactor with precise positioning of axial ligands and second-shell interactions, as well as purposeful accessibility for oxidants and substrates. The resulting protein was the first crystallographically characterized de novo designed porphyrin-binding protein. MPP1 demonstrated the ability to stabilize a high-valent Mn(V)-oxo species and mediate thioether oxidation. This chapter details the computational strategies, cofactor incorporation, and solution characterization necessary to design and evaluate four-helix bundle proteins capable of binding porphyrin and porphyrin-like cofactors with atomic-level precision. Keywords: de novo design, protein design, bioinorganic chemistry, metalloporphyrins, heme proteins.</p>","PeriodicalId":18662,"journal":{"name":"Methods in enzymology","volume":"720 ","pages":"1-22"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12497995/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145232889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design and preparation of artificial heme-copper enzymes. 人造血红素-铜酶的设计与制备。
4区 生物学
Methods in enzymology Pub Date : 2025-01-01 Epub Date: 2025-09-26 DOI: 10.1016/bs.mie.2025.08.004
Hirbod Heidari, Duong Phan, Danielle Lawson, Yi Lu
{"title":"Design and preparation of artificial heme-copper enzymes.","authors":"Hirbod Heidari, Duong Phan, Danielle Lawson, Yi Lu","doi":"10.1016/bs.mie.2025.08.004","DOIUrl":"https://doi.org/10.1016/bs.mie.2025.08.004","url":null,"abstract":"<p><p>Natural and artificial metalloproteins play a critical role in biochemistry, with the first X-ray crystal structures ever solved belonging to heme proteins Due to their ability to carry out a diverse array of challenging reactions at ambient temperature, effective metalloenzyme design and isolation strategies are highly desirable. Control of active site geometry is often the key requirement for catalysis and its mutagenesis helps probe a wide variety of biological and abiological reactions. In the case of small-molecule activation, introduction of new metal-binding sites to non-native heme scaffolds can unlock new chemistry. In this chapter, we will provide methods used in our lab for the design and experimental preparation of artificial metalloenzymes containing a heme-copper center to mimic and understand heme-copper oxidases. The methods can be applied to design other heterobinuclear centers containing heme, such as the heme-nonheme iron center in nitric oxidase reductases.</p>","PeriodicalId":18662,"journal":{"name":"Methods in enzymology","volume":"720 ","pages":"77-113"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145232820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cobalt-substituted hemoprotein expression. 钴取代血红蛋白表达。
4区 生物学
Methods in enzymology Pub Date : 2025-01-01 Epub Date: 2025-07-04 DOI: 10.1016/bs.mie.2025.06.031
Madeline E Rodemeier, Olivia P Holsinger, Andrew R Buller
{"title":"Cobalt-substituted hemoprotein expression.","authors":"Madeline E Rodemeier, Olivia P Holsinger, Andrew R Buller","doi":"10.1016/bs.mie.2025.06.031","DOIUrl":"https://doi.org/10.1016/bs.mie.2025.06.031","url":null,"abstract":"<p><p>Substituting the native metal of metalloenzymes can significantly alter the enzymes' reactivity and spectroscopic properties. Cobalt is especially attractive as a substitute for the native iron center in hemoproteins, as it generates metal variants with complementary spectroscopic properties and could enable new modes of reactivity. Here, we describe a detailed protocol for the biosynthesis and incorporation of cobalt protoporphyrin IX (CoPPIX) into hemoproteins, replacing the native heme b cofactor during expression in the common laboratory strain Escherichia coli BL21(DE3). This protocol is described using the model hemoprotein Physeter macrocephalus (sperm whale) myoglobin. Because of cobalt's unique electronic and geometric properties, cobalt-substituted hemoproteins offer a valuable handle for spectroscopic characterization and structural studies. We describe analytic methods of assessing cofactor identity and purity, including electronic absorption spectroscopy, liquid-chromatography/mass-spectrometry, inductively coupled plasma-mass spectrometry, and electron paramagnetic resonance spectroscopy. This method for generating artificial metalloenzymes is effective, easy to implement, and can produce useful quantities of Co-substituted hemoproteins.</p>","PeriodicalId":18662,"journal":{"name":"Methods in enzymology","volume":"720 ","pages":"55-76"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145232845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preface. 前言。
4区 生物学
Methods in enzymology Pub Date : 2025-01-01 DOI: 10.1016/S0076-6879(25)00184-3
{"title":"Preface.","authors":"","doi":"10.1016/S0076-6879(25)00184-3","DOIUrl":"https://doi.org/10.1016/S0076-6879(25)00184-3","url":null,"abstract":"","PeriodicalId":18662,"journal":{"name":"Methods in enzymology","volume":"714 ","pages":"xxvii-xxviii"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144002888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reductive amination: Methods for cell-free and whole-cell biocatalysis. 还原胺化:无细胞和全细胞生物催化的方法。
4区 生物学
Methods in enzymology Pub Date : 2025-01-01 Epub Date: 2025-02-09 DOI: 10.1016/bs.mie.2025.01.002
Vasilis Tseliou, Matteo Damian, Josemarco Mendoza-Avila, Marco Rabuffetti, Francesco G Mutti
{"title":"Reductive amination: Methods for cell-free and whole-cell biocatalysis.","authors":"Vasilis Tseliou, Matteo Damian, Josemarco Mendoza-Avila, Marco Rabuffetti, Francesco G Mutti","doi":"10.1016/bs.mie.2025.01.002","DOIUrl":"https://doi.org/10.1016/bs.mie.2025.01.002","url":null,"abstract":"<p><p>Enzymatic reductive amination is now a green and selective method for the efficient conversion of ketones into chiral amines with high optical purity. Transaminases (TAs) have been widely employed at both laboratory and industrial scale for the synthesis of primary amines. Additionally, amine dehydrogenases (AmDHs), imine reductases (IREDs) and reductive aminases (RedAms) enable the stereoselective synthesis of primary, secondary and tertiary amines. Recent advancements in protein engineering have expanded the substrate scope and improved the stability of these biocatalysts, enabling broader applications. The use of immobilized enzymes and whole-cell systems further enhances the efficiency and sustainability of these methods. This chapter provides detailed protocols for enzymatic reductive amination for the synthesis of primary, secondary, and tertiary chiral amines using isolated or immobilized enzymes, or whole-cell biocatalysts.</p>","PeriodicalId":18662,"journal":{"name":"Methods in enzymology","volume":"714 ","pages":"269-295"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144023222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信