Tony M Mertz, Zachary W Kockler, Margo Coxon, Cameron Cordero, Atri K Raval, Alexander J Brown, Victoria Harcy, Dmitry A Gordenin, Steven A Roberts
{"title":"在酵母中定义apobecc诱导的突变特征和修饰活性。","authors":"Tony M Mertz, Zachary W Kockler, Margo Coxon, Cameron Cordero, Atri K Raval, Alexander J Brown, Victoria Harcy, Dmitry A Gordenin, Steven A Roberts","doi":"10.1016/bs.mie.2024.11.041","DOIUrl":null,"url":null,"abstract":"<p><p>APOBEC cytidine deaminases guard cells in a variety of organisms from invading viruses and foreign nucleic acids. Recently, several human APOBECs have been implicated in mutating evolving cancer genomes. Expression of APOBEC3A and APOBEC3B in yeast allowed experimental derivation of the substitution patterns they cause in dividing cells, which provided critical links to these enzymes in the etiology of the COSMIC single base substitution (SBS) signatures 2 and 13 in human tumors. Additionally, the ability to scale yeast experiments to high-throughput screens allows use of this system to also investigate cellular pathways impacting the frequency of APOBEC-induced mutation. Here, we present validated methods utilizing yeast to determine APOBEC mutation signatures, genetic interactors, and chromosomal substrate preferences. These methods can be employed to assess the potential of other human APOBECs and APOBEC orthologs in different species to contribute to cancer genome evolution as well as define the pathways that protect the nuclear genome from inadvertent APOBEC activity during viral restriction.</p>","PeriodicalId":18662,"journal":{"name":"Methods in enzymology","volume":"713 ","pages":"115-161"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Defining APOBEC-induced mutation signatures and modifying activities in yeast.\",\"authors\":\"Tony M Mertz, Zachary W Kockler, Margo Coxon, Cameron Cordero, Atri K Raval, Alexander J Brown, Victoria Harcy, Dmitry A Gordenin, Steven A Roberts\",\"doi\":\"10.1016/bs.mie.2024.11.041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>APOBEC cytidine deaminases guard cells in a variety of organisms from invading viruses and foreign nucleic acids. Recently, several human APOBECs have been implicated in mutating evolving cancer genomes. Expression of APOBEC3A and APOBEC3B in yeast allowed experimental derivation of the substitution patterns they cause in dividing cells, which provided critical links to these enzymes in the etiology of the COSMIC single base substitution (SBS) signatures 2 and 13 in human tumors. Additionally, the ability to scale yeast experiments to high-throughput screens allows use of this system to also investigate cellular pathways impacting the frequency of APOBEC-induced mutation. Here, we present validated methods utilizing yeast to determine APOBEC mutation signatures, genetic interactors, and chromosomal substrate preferences. These methods can be employed to assess the potential of other human APOBECs and APOBEC orthologs in different species to contribute to cancer genome evolution as well as define the pathways that protect the nuclear genome from inadvertent APOBEC activity during viral restriction.</p>\",\"PeriodicalId\":18662,\"journal\":{\"name\":\"Methods in enzymology\",\"volume\":\"713 \",\"pages\":\"115-161\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods in enzymology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/bs.mie.2024.11.041\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in enzymology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.mie.2024.11.041","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/2 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Defining APOBEC-induced mutation signatures and modifying activities in yeast.
APOBEC cytidine deaminases guard cells in a variety of organisms from invading viruses and foreign nucleic acids. Recently, several human APOBECs have been implicated in mutating evolving cancer genomes. Expression of APOBEC3A and APOBEC3B in yeast allowed experimental derivation of the substitution patterns they cause in dividing cells, which provided critical links to these enzymes in the etiology of the COSMIC single base substitution (SBS) signatures 2 and 13 in human tumors. Additionally, the ability to scale yeast experiments to high-throughput screens allows use of this system to also investigate cellular pathways impacting the frequency of APOBEC-induced mutation. Here, we present validated methods utilizing yeast to determine APOBEC mutation signatures, genetic interactors, and chromosomal substrate preferences. These methods can be employed to assess the potential of other human APOBECs and APOBEC orthologs in different species to contribute to cancer genome evolution as well as define the pathways that protect the nuclear genome from inadvertent APOBEC activity during viral restriction.
期刊介绍:
The critically acclaimed laboratory standard for almost 50 years, Methods in Enzymology is one of the most highly respected publications in the field of biochemistry. Each volume is eagerly awaited, frequently consulted, and praised by researchers and reviewers alike. Now with over 500 volumes the series contains much material still relevant today and is truly an essential publication for researchers in all fields of life sciences, including microbiology, biochemistry, cancer research and genetics-just to name a few. Five of the 2013 Nobel Laureates have edited or contributed to volumes of MIE.