{"title":"Genome mining for natural products made by multinuclear iron-dependent oxidation enzymes (MNIOs).","authors":"Yue Yu, Wilfred A van der Donk","doi":"10.1016/bs.mie.2025.01.060","DOIUrl":null,"url":null,"abstract":"<p><p>Multinuclear non-heme iron-dependent oxidative enzymes (MNIOs) are a family of diiron/triiron enzymes that install post-translational modifications (PTMs) on ribosomally produced peptides. These modifications include oxazolone-thioamide formation, carbon excision, thiooxazole formation, α-keto acid formation, and N-Cα bond cleavage, demonstrating the high functional diversity of MNIOs. Many MNIOs function together with a partner protein that helps recruit the substrate peptide. This review outlines experimental methods for the expression and purification of a representative MNIO (TglH) and its peptide substrate (TglA), as well as the characterization of the resulting PTM using various spectroscopic methods and isotope labeling. These protocols can be applied to study other MNIO-encoding pathways, with case-by-case adaptations and differences highlighted. Continued genome mining of MNIOs is likely to reveal more novel enzymatic functions, advancing our understanding of their catalytic mechanisms and their roles in natural product biosynthesis.</p>","PeriodicalId":18662,"journal":{"name":"Methods in enzymology","volume":"717 ","pages":"89-117"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in enzymology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.mie.2025.01.060","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/16 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Multinuclear non-heme iron-dependent oxidative enzymes (MNIOs) are a family of diiron/triiron enzymes that install post-translational modifications (PTMs) on ribosomally produced peptides. These modifications include oxazolone-thioamide formation, carbon excision, thiooxazole formation, α-keto acid formation, and N-Cα bond cleavage, demonstrating the high functional diversity of MNIOs. Many MNIOs function together with a partner protein that helps recruit the substrate peptide. This review outlines experimental methods for the expression and purification of a representative MNIO (TglH) and its peptide substrate (TglA), as well as the characterization of the resulting PTM using various spectroscopic methods and isotope labeling. These protocols can be applied to study other MNIO-encoding pathways, with case-by-case adaptations and differences highlighted. Continued genome mining of MNIOs is likely to reveal more novel enzymatic functions, advancing our understanding of their catalytic mechanisms and their roles in natural product biosynthesis.
期刊介绍:
The critically acclaimed laboratory standard for almost 50 years, Methods in Enzymology is one of the most highly respected publications in the field of biochemistry. Each volume is eagerly awaited, frequently consulted, and praised by researchers and reviewers alike. Now with over 500 volumes the series contains much material still relevant today and is truly an essential publication for researchers in all fields of life sciences, including microbiology, biochemistry, cancer research and genetics-just to name a few. Five of the 2013 Nobel Laureates have edited or contributed to volumes of MIE.