Characterization of bacterial transporters involved in the uptake of lignin-derived aromatic compounds.

4区 生物学 Q3 Biochemistry, Genetics and Molecular Biology
Methods in enzymology Pub Date : 2025-01-01 Epub Date: 2025-02-18 DOI:10.1016/bs.mie.2025.01.053
Masaya Fujita, Naofumi Kamimura, Eiji Masai
{"title":"Characterization of bacterial transporters involved in the uptake of lignin-derived aromatic compounds.","authors":"Masaya Fujita, Naofumi Kamimura, Eiji Masai","doi":"10.1016/bs.mie.2025.01.053","DOIUrl":null,"url":null,"abstract":"<p><p>Chemically depolymerized low-molecular-weight lignin can be converted into polymer building blocks using bacterial convergent metabolic systems called biological funneling. Various bacterial enzyme genes involved in the catabolism of lignin-derived aromatic compounds have been identified and characterized in detail. This information is essential for developing the bioproduction of high-value-added chemicals from lignin. Transporters responsible for the first step in catabolism mediate the transport of substrates across biological membranes. Since substrate uptake in biological membranes can be an obstacle or a rate-limiting process in the bacterial production of value-added compounds, it is vital to understand not only enzyme functions but also uptake systems. In this chapter, we focus on the bacterial transporters for lignin-derived aromatic compounds that have been reported and introduce methods for the characterization of transporters, primarily through in vivo analyses. In addition, we will present an antibody-based analysis of the cellular localization of transporters.</p>","PeriodicalId":18662,"journal":{"name":"Methods in enzymology","volume":"716 ","pages":"285-312"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in enzymology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.mie.2025.01.053","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/18 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

Chemically depolymerized low-molecular-weight lignin can be converted into polymer building blocks using bacterial convergent metabolic systems called biological funneling. Various bacterial enzyme genes involved in the catabolism of lignin-derived aromatic compounds have been identified and characterized in detail. This information is essential for developing the bioproduction of high-value-added chemicals from lignin. Transporters responsible for the first step in catabolism mediate the transport of substrates across biological membranes. Since substrate uptake in biological membranes can be an obstacle or a rate-limiting process in the bacterial production of value-added compounds, it is vital to understand not only enzyme functions but also uptake systems. In this chapter, we focus on the bacterial transporters for lignin-derived aromatic compounds that have been reported and introduce methods for the characterization of transporters, primarily through in vivo analyses. In addition, we will present an antibody-based analysis of the cellular localization of transporters.

参与木质素衍生芳香族化合物摄取的细菌转运体的表征。
化学解聚的低分子量木质素可以通过细菌聚合代谢系统(称为生物漏斗)转化为聚合物构建块。参与木质素衍生芳香族化合物分解代谢的各种细菌酶基因已经被鉴定和详细表征。这一信息对于从木质素中开发高附加值化学品的生物生产至关重要。负责分解代谢第一步的转运蛋白介导底物跨生物膜的转运。由于生物膜中的底物摄取可能是细菌生产增值化合物的障碍或限速过程,因此不仅要了解酶的功能,还要了解摄取系统。在本章中,我们重点介绍了已报道的木质素衍生芳香族化合物的细菌转运体,并介绍了转运体表征的方法,主要是通过体内分析。此外,我们将提出一种基于抗体的转运蛋白细胞定位分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Methods in enzymology
Methods in enzymology 生物-生化研究方法
CiteScore
2.90
自引率
0.00%
发文量
308
审稿时长
3-6 weeks
期刊介绍: The critically acclaimed laboratory standard for almost 50 years, Methods in Enzymology is one of the most highly respected publications in the field of biochemistry. Each volume is eagerly awaited, frequently consulted, and praised by researchers and reviewers alike. Now with over 500 volumes the series contains much material still relevant today and is truly an essential publication for researchers in all fields of life sciences, including microbiology, biochemistry, cancer research and genetics-just to name a few. Five of the 2013 Nobel Laureates have edited or contributed to volumes of MIE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信