{"title":"Dynamics of stress propagation in anharmonic crystals: MD simulations","authors":"Zbigniew Kozioł","doi":"10.1088/1361-651x/ad4575","DOIUrl":"https://doi.org/10.1088/1361-651x/ad4575","url":null,"abstract":"Anharmonic inter-atomic potential , n > 1, has been used in molecular dynamics (MD) simulations of stress dynamics of FCC oriented crystal. The model of the chain of masses and springs is found as a convenient and accurate description of simulation results, with masses representing the crystallographic planes. The dynamics of oscillations of two planes is found analytically to be given by Euler’s beta functions, and its scaling with non-linearity parameter and amplitude of oscillations, or applied shear pressure is discussed on examples of time dependencies of displacements, velocities, and forces acting on masses (planes). The dynamics of stress penetration from the surface of the sample with multiply-planes (an anharmonic crystal) towards its interior is confirmed to be given exactly as a series of Bessel functions, when n = 2 (Schrödinger and Pater solutions). When n 2 the stress dynamics (wave propagation) in bulk material remains qualitatively of the same nature as in the harmonic case. In particular, results suggest that the quasi-linear relationship between frequency and the wave number is preserved. The speed of the transverse sound component, dependent on sound wave amplitude, is found to be a strongly decreasing function of n. The results are useful in the analysis of any MD simulations under pressure, as they help to understand the dynamics of pressure retarded effects, as well as help design the proper methodology of performing MD simulations in cases such as, for instance, studies of the dynamics of dislocations.","PeriodicalId":18648,"journal":{"name":"Modelling and Simulation in Materials Science and Engineering","volume":"103 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140931264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yixiu Luo, Juan Wang, Luchao Sun and Jingyang Wang
{"title":"Phononic origin of the infrared dielectric properties of RE2O3 (RE = Y, Gd, Ho, Lu) compounds","authors":"Yixiu Luo, Juan Wang, Luchao Sun and Jingyang Wang","doi":"10.1088/1361-651x/ad461e","DOIUrl":"https://doi.org/10.1088/1361-651x/ad461e","url":null,"abstract":"Understanding the phononic origin of the infrared (IR) dielectric properties of yttria (Y2O3) and other rare-earth sesquioxides (RE2O3) is a fundamental task in the search of appropriate RE2O3 materials that serve particular IR optical applications. We herein investigate the IR dielectric properties of RE2O3 (RE = Y, Gd, Ho, Lu) using density functional theory-based phonon calculations and Lorentz oscillator model. The abundant IR-active optical phonon modes that are available for effective absorption of photons result in high reflectance of RE2O3, among which four IR-active modes originated from large distortions of REO6 octahedra are found to contribute dominantly to the phonon dielectric constants. Particularly, the present calculation method by considering one-phonon absorption process is demonstrated with good reliability in predicting the IR dielectric parameters of RE2O3 at the far-IR as well as the vicinity of mid-IR region, and the potential cutoff frequency/wavelength of its applicability is disclosed as characterized by the maximum frequency of IR-active longitudinal phonon modes. The results deepen the understanding on IR dielectric properties of RE2O3, and aid the computational design of materials with appropriate IR properties.","PeriodicalId":18648,"journal":{"name":"Modelling and Simulation in Materials Science and Engineering","volume":"156 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140931274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Direct integration of measured viscoelastic relaxation data in time-domain finite element simulations","authors":"Eric Abercrombie, J Gregory McDaniel","doi":"10.1088/1361-651x/ad44bd","DOIUrl":"https://doi.org/10.1088/1361-651x/ad44bd","url":null,"abstract":"The current approach to modeling viscoelastic materials in most commercial finite element packages is based on the General Maxwell Model, which views these materials as combinations of spring and dashpot elements. However, the data can be incorporated more directly into a transient finite element study by direct interpolation of the relaxation function. This work explores a linear interpolation scheme to the inclusion of viscoelastic relaxation functions on an example problem. The results show several benefits over the General Maxwell Model for transient studies. Included in the analysis are displacement solutions utilizing both approaches, relaxation function error calculations for both approaches, and parametric runtime studies comparing speed of calculation. The variation in computational flop counts is considered and an argument is made for the preference of the proposed approach.","PeriodicalId":18648,"journal":{"name":"Modelling and Simulation in Materials Science and Engineering","volume":"8 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140931188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rahul Ghosh, Bhavana Sahu, Arjun Dey, Hari Krishna Thota, Karabi Das
{"title":"Artificial neural network-based approach for prediction of nanomechanical properties of anodic coating on additively manufactured Al–10Si–Mg alloy","authors":"Rahul Ghosh, Bhavana Sahu, Arjun Dey, Hari Krishna Thota, Karabi Das","doi":"10.1088/1361-651x/ad4407","DOIUrl":"https://doi.org/10.1088/1361-651x/ad4407","url":null,"abstract":"Nowadays, anodic coating on additively manufactured (AM) or 3D printed Al–10Si–Mg alloy are used for various components in spacecraft such as antenna feeds, wave guides, structural brackets, collimators, thermal radiators etc. In this study, artificial neural network (ANN) and power law-based models are developed from experimental nanoindentation data for predicting elastic modulus and hardness of anodized AM Al–10Si–Mg at any desired loads. Data from nanoindentation experiments conducted on plan- and cross-sections of anodized coating on AM Al–10Si–Mg alloy was considered for modeling. Apart from nanomechanical properties, load and displacement curves were predicted using Python software from ANN and the Power law model of nanoindentation. It is observed that the ANN model of 50 mN nanoindentation experimental data can accurately predict the loading pattern at any desired load below 50 mN. Elastic modulus and hardness of anodized AM Al–10Si–Mg computed from ANN and the power law model of the unloading curve are also comparable with the values obtained from Weibull distribution analysis reported elsewhere. The derived models were also used to predict nanomechanical properties at 25 and 35 mN, for which no experimental data was available. The computed hardness of plan section of the anodic coating is 3.99 and 4.02 GPa for 25 and 35 mN, respectively. The computed hardness of cross-section of the anodic coating of is 7.16 and 6.61 GPa for 25 and 35 mN, respectively. Thus, the ANN and Power law model of nanoindentation can predict elastic modulus and hardness at different loads by conducting the minimum number of experiments. The novel approach to predict nanomechanical properties using ANN resulted in determining realistic and design specific data on hardness and modulus of the anodized coating on AM Al–10Si–Mg alloy.","PeriodicalId":18648,"journal":{"name":"Modelling and Simulation in Materials Science and Engineering","volume":"156 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140930983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Size effects on spinodal decomposition","authors":"George Petsos","doi":"10.1088/1361-651x/ad4408","DOIUrl":"https://doi.org/10.1088/1361-651x/ad4408","url":null,"abstract":"We examine the influence of grains size on the stability of polycrystalline coherent binary solid solutions. By assuming that the grains are isotropic, we find that the tendency for instability decreases as the radius of the grains decrease. We also find that a temperature-dependent critical grain radius exists below which the tendency for instability vanishes and the grains are stable, with respect to infinitesimal composition fluctuations, for any initial composition. We find that the critical grain radius decreases monotonically as the temperature decrease. If the radius of the grains is smaller than the minimum critical grain radius the grains are stable for any temperature and initial composition.","PeriodicalId":18648,"journal":{"name":"Modelling and Simulation in Materials Science and Engineering","volume":"11 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140931079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Reply to comment on ‘Composition-based aluminum alloy selection using an artificial neural network’","authors":"Jaka Fajar Fatriansyah, Raihan Kenji Rizqillah, Iping Suhariadi, Andreas Federico, Ade Kurniawan","doi":"10.1088/1361-651x/ad4574","DOIUrl":"https://doi.org/10.1088/1361-651x/ad4574","url":null,"abstract":"This reply is addressed to comments on our paper entitled ‘Composition-based Aluminum Alloy Selection Using an Artificial Neural Network.’ There are six main comments, and we addressed the comments carefully. This machine learning (ML) modeling is only part of the development of a broader material selection (or material screening) system. Consideration of other material properties can certainly be included through the integration of ML systems.","PeriodicalId":18648,"journal":{"name":"Modelling and Simulation in Materials Science and Engineering","volume":"42 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140931107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The effect of geometrical parameters on dimensional deviation in LPBF produced TPMS lattices: a numerical simulation based study","authors":"Orhan Gülcan, Kadir Günaydın, Aykut Tamer","doi":"10.1088/1361-651x/ad3a00","DOIUrl":"https://doi.org/10.1088/1361-651x/ad3a00","url":null,"abstract":"Triply periodic minimal surface (TPMS) lattices have drawn great attention both in academic and industrial perspective due to their outstanding mechanical behaviours. Additive manufacturing (AM) modalities enable the production of these lattices very easily. However, dimensional inaccuracy is still one of the problems that AM still faces with. Manufacturing of these lattices with AM modalities, then measuring the critical dimensions and making design changes accordingly is a costly process. Therefore, it is necessary to predict the dimensional deviation of TPMS lattices before print is a key topic. This study focused on prediction of dimensional deviation of laser powder bed fusion (LPBF) produced gyroid, diamond, primitive, IWP and Fisher-Koch lattices by using thermomechanical simulations. TPMS type, unit cell size, volume fraction, functional grading and part orientation were selected as design variables. Results showed that all the design inputs have effects on dimensional accuracy of LPBF produced parts and TPMS type has the most critical factor. Based on analysis of variance analysis, an optimum lattice configuration was proposed to obtain the lowest dimensional deviation after LPBF build.","PeriodicalId":18648,"journal":{"name":"Modelling and Simulation in Materials Science and Engineering","volume":"39 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140614094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Do we really need machine learning interatomic potentials for modeling amorphous metal oxides? Case study on amorphous alumina by recycling an existing ab initio database","authors":"Simon Gramatte, Vladyslav Turlo, Olivier Politano","doi":"10.1088/1361-651x/ad39ff","DOIUrl":"https://doi.org/10.1088/1361-651x/ad39ff","url":null,"abstract":"In this study, we critically evaluate the performance of various interatomic potentials/force fields against a benchmark <italic toggle=\"yes\">ab initio</italic> database for bulk amorphous alumina. The interatomic potentials tested in this work include all major fixed charge and variable charge models developed to date for alumina. Additionally, we introduce a novel machine learning interatomic potential constructed using the NequIP framework based on graph neural networks. Our findings reveal that the fixed-charge potential developed by Matsui and coworkers offers the most optimal balance between computational efficiency and agreement with <italic toggle=\"yes\">ab initio</italic> data for stoichiometric alumina. Such balance cannot be provided by machine learning potentials when comparing performance with Matsui potential on the same computing infrastructure using a single Graphical Processing Unit. For non-stoichiometric alumina, the variable charge potentials, in particular ReaxFF, exhibit an impressive concordance with density functional theory calculations. However, our NequIP potentials trained on a small fraction of the <italic toggle=\"yes\">ab initio</italic> database easily surpass ReaxFF in terms of both accuracy and computational performance. This is achieved without large overhead in terms of potential fitting and fine-tuning, often associated with the classical potential development process as well as training of standard deep neural network potentials, thus advocating for the use of data-efficient machine learning potentials like NequIP for complex cases of non-stoichiometric amorphous oxides.","PeriodicalId":18648,"journal":{"name":"Modelling and Simulation in Materials Science and Engineering","volume":"20 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140614117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Applied electric field to repair metal defects and accelerate dehydrogenation","authors":"Yunpeng Gao, Xiangguo Zeng, Minghua Chi","doi":"10.1088/1361-651x/ad2d67","DOIUrl":"https://doi.org/10.1088/1361-651x/ad2d67","url":null,"abstract":"Repairing metal micro-defects at the atomic level is very challenging due to their random dispersion and difficulty in identification. At the same time, the interaction of hydrogen with metal may cause hydrogen damage or embrittlement, endangering structural safety. As a result, it is critical to speed up the dehydrogenation of hydrogen-containing materials. The applied electric field can repair the vacancy defects of the material and accelerate the dehydrogenation of the hydrogen-containing metal. The influence of the external environment on the diffusion coefficient of hydrogen in polycrystalline metals was researched using molecular dynamics in this article, and the mechanism of hydrogen diffusion was investigated. Simultaneously, the mechanical characteristics of Fe<sub>3</sub>Cr alloy were compared during typical heat treatment and electrical treatment. The effect of temperature, electric field strength, and electric field direction on the diffusion coefficient was investigated using orthogonal test analysis. The results demonstrate that temperature and electric field strength have a significant impact on the diffusion coefficient. The atom vibrates violently as the temperature rises, breaking past the diffusion barrier and completing the atomic transition. The addition of the electric field adds extra free energy, decreases the atom’s activation energy, and ultimately enhances the atom’s diffusion coefficient. The repair impact of vacancy defects under electrical treatment is superior to that of typical annealing treatment for polycrystalline Fe<sub>3</sub>Cr alloy. The electric field can cause the dislocation to migrate, increasing the metal’s toughness and plasticity. This research serves as a useful reference for the electrical treatment of metal materials and offers a method for the quick dehydrogenation of hydrogen-containing materials.","PeriodicalId":18648,"journal":{"name":"Modelling and Simulation in Materials Science and Engineering","volume":"158 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140314160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nikolay Zotov, Konstantin Gubaev, Julian Wörner, Blazej Grabowski
{"title":"Moment tensor potential for static and dynamic investigations of screw dislocations in bcc Nb","authors":"Nikolay Zotov, Konstantin Gubaev, Julian Wörner, Blazej Grabowski","doi":"10.1088/1361-651x/ad2d68","DOIUrl":"https://doi.org/10.1088/1361-651x/ad2d68","url":null,"abstract":"A new machine-learning interatomic potential, specifically a moment tensor potential (MTP), is developed for the study of screw-dislocation properties in body-centered-cubic (bcc) Nb in the thermally- and stress-assisted temperature regime. Importantly, configurations with straight screw dislocations and with kink pairs are included in the training set. The resulting MTP reproduces with near density-functional theory (DFT) accuracy a broad range of physical properties of bcc Nb, in particular, the Peierls barrier and the compact screw-dislocation core structure. Moreover, it accurately reproduces the energy of the easy core and the twinning-anti-twinning asymmetry of the critical resolved shear stress (CRSS). Thereby, the developed MTP enables large-scale molecular dynamics simulations with near DFT accuracy of properties such as for example the Peierls stress, the critical waiting time for the onset of screw dislocation movement, atomic trajectories of screw dislocation migration, as well as the temperature dependence of the CRSS. A critical assessment of previous results obtained with classical embedded atom method potentials thus becomes possible.","PeriodicalId":18648,"journal":{"name":"Modelling and Simulation in Materials Science and Engineering","volume":"33 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140314165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}