{"title":"时域有限元模拟中粘弹性弛豫测量数据的直接整合","authors":"Eric Abercrombie, J Gregory McDaniel","doi":"10.1088/1361-651x/ad44bd","DOIUrl":null,"url":null,"abstract":"The current approach to modeling viscoelastic materials in most commercial finite element packages is based on the General Maxwell Model, which views these materials as combinations of spring and dashpot elements. However, the data can be incorporated more directly into a transient finite element study by direct interpolation of the relaxation function. This work explores a linear interpolation scheme to the inclusion of viscoelastic relaxation functions on an example problem. The results show several benefits over the General Maxwell Model for transient studies. Included in the analysis are displacement solutions utilizing both approaches, relaxation function error calculations for both approaches, and parametric runtime studies comparing speed of calculation. The variation in computational flop counts is considered and an argument is made for the preference of the proposed approach.","PeriodicalId":18648,"journal":{"name":"Modelling and Simulation in Materials Science and Engineering","volume":"8 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Direct integration of measured viscoelastic relaxation data in time-domain finite element simulations\",\"authors\":\"Eric Abercrombie, J Gregory McDaniel\",\"doi\":\"10.1088/1361-651x/ad44bd\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The current approach to modeling viscoelastic materials in most commercial finite element packages is based on the General Maxwell Model, which views these materials as combinations of spring and dashpot elements. However, the data can be incorporated more directly into a transient finite element study by direct interpolation of the relaxation function. This work explores a linear interpolation scheme to the inclusion of viscoelastic relaxation functions on an example problem. The results show several benefits over the General Maxwell Model for transient studies. Included in the analysis are displacement solutions utilizing both approaches, relaxation function error calculations for both approaches, and parametric runtime studies comparing speed of calculation. The variation in computational flop counts is considered and an argument is made for the preference of the proposed approach.\",\"PeriodicalId\":18648,\"journal\":{\"name\":\"Modelling and Simulation in Materials Science and Engineering\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modelling and Simulation in Materials Science and Engineering\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-651x/ad44bd\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modelling and Simulation in Materials Science and Engineering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-651x/ad44bd","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Direct integration of measured viscoelastic relaxation data in time-domain finite element simulations
The current approach to modeling viscoelastic materials in most commercial finite element packages is based on the General Maxwell Model, which views these materials as combinations of spring and dashpot elements. However, the data can be incorporated more directly into a transient finite element study by direct interpolation of the relaxation function. This work explores a linear interpolation scheme to the inclusion of viscoelastic relaxation functions on an example problem. The results show several benefits over the General Maxwell Model for transient studies. Included in the analysis are displacement solutions utilizing both approaches, relaxation function error calculations for both approaches, and parametric runtime studies comparing speed of calculation. The variation in computational flop counts is considered and an argument is made for the preference of the proposed approach.
期刊介绍:
Serving the multidisciplinary materials community, the journal aims to publish new research work that advances the understanding and prediction of material behaviour at scales from atomistic to macroscopic through modelling and simulation.
Subject coverage:
Modelling and/or simulation across materials science that emphasizes fundamental materials issues advancing the understanding and prediction of material behaviour. Interdisciplinary research that tackles challenging and complex materials problems where the governing phenomena may span different scales of materials behaviour, with an emphasis on the development of quantitative approaches to explain and predict experimental observations. Material processing that advances the fundamental materials science and engineering underpinning the connection between processing and properties. Covering all classes of materials, and mechanical, microstructural, electronic, chemical, biological, and optical properties.