C. Fressengeas, Tatiana Lebedkina, Mikhail Lebedkin
{"title":"Complex patterning in jerky flow from time series analysis and numerical simulation","authors":"C. Fressengeas, Tatiana Lebedkina, Mikhail Lebedkin","doi":"10.1088/1361-651x/ad29ad","DOIUrl":"https://doi.org/10.1088/1361-651x/ad29ad","url":null,"abstract":"\u0000 The paper is a tribute to Ladislas P. Kubin's long-standing work on the collective behavior of dislocations in jerky flow. In a first part, it reviews his contributions to the statistical, dynamical and multifractal analyses carried out on stress-time series recorded from both single crystals and polycrystalline samples of dilute alloys subjected to tensile tests at constant strain rate. Various spatio-temporal dynamical regimes were found as the applied strain rate was varied. Type C static bands were associated with quasi-random collective behavior, the hopping type B and propagating type A bands could be shown to correspond to chaotic and self-organized critical dynamics, respectively. The crossover between the A and B regimes was characterized by a large spread in the multifractal spectrum of stress drops, associated with heterogeneity of the dynamics. In a second part, the paper reviews the nonlocal models Ladislas inspired to interpret these results from numerical solutions of the boundary value problem, on the basis of dynamic strain aging, the incompatibility stresses associated with dislocations, their plastic relaxation and the spatial couplings they inherently involve. Eventual developments of this research, rooted in the same ideas, on the statistical and multifractal analyses of the accompanying acoustic emission are reviewed and discussed in terms of the synchronization of small-scale plastic events.","PeriodicalId":18648,"journal":{"name":"Modelling and Simulation in Materials Science and Engineering","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139776615","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Elastic interactions between screw dislocations in iron","authors":"Daniel Caillard","doi":"10.1088/1361-651x/ad29b0","DOIUrl":"https://doi.org/10.1088/1361-651x/ad29b0","url":null,"abstract":"\u0000 The kinetics of elastically interacting screw dislocations has been studied in pure iron strained in situ at low temperature. Annihilating and expanding screw dipoles yield macroscopic activation areas which are substantially smaller than those deduced from conventional mechanical stress, but consistent with theoretical estimates.The kinetics of attractive intersecting screw dislocations indicates that their velocity is determined by the velocity of their most stressed parts. Repulsive screw dislocations with different Burgers vectors can move cooperatively at a surprisingly high velocity, probably on elastic torque interactions and twinning-anti-twinning effects. All these interactions are shown to play an important role in the description of macroscopic mechanical properties in terms of individual dislocation mechanisms.","PeriodicalId":18648,"journal":{"name":"Modelling and Simulation in Materials Science and Engineering","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139833553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Simulations of the effect of shot peening backstress on nanoindentation","authors":"Hui Chen, P. Kanouté, Manuel Francois","doi":"10.1088/1361-651x/ad29b2","DOIUrl":"https://doi.org/10.1088/1361-651x/ad29b2","url":null,"abstract":"\u0000 Shot peening is a mechanical surface treatment that can introduce compressive residual stress and work hardening simultaneously. This work hardening, considered as a modification of the elastic region with plastic strain, can be modelled with two types of contributions: isotropic hardening and kinematic hardening. In order to characterize the mechanical properties of the treated surface using the instrumented indentation technique, the effect of the backstress associated with kinematic hardening should be studied, especially for works related to fatigue loading. In this paper, the distribution of three backstress components is obtained by shot peening simulations on a nickel-based alloy, Inconel 718, commonly used in the aerospace industry, and a series of indentation simulations are carried out using a spherical tip with different equivalent backstress levels. For Inconel 718, the third backstress component, which has the slowest evolution rate, is found to have the most significant influence on the response. However, compared to the effect of residual stress and cumulated plastic strain, the effect of backstress can be neglected.","PeriodicalId":18648,"journal":{"name":"Modelling and Simulation in Materials Science and Engineering","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139834470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wenqing Zhu, Yao Deng, Junjie Liu, Xin Yan, Xioading Wei
{"title":"Strain-dependent Transition of the Relaxation Dynamics in Metallic Glasses","authors":"Wenqing Zhu, Yao Deng, Junjie Liu, Xin Yan, Xioading Wei","doi":"10.1088/1361-651x/ad29b1","DOIUrl":"https://doi.org/10.1088/1361-651x/ad29b1","url":null,"abstract":"\u0000 Non-exponential relaxation is pervasive in glassy systems and intimately related to unique thermodynamic features, such as glass transition and aging; however, the underlying mechanisms remain unclear. The time scale of non-exponential relaxation goes beyond the time limit (nanosecond) of classic molecular dynamics simulation. Thus, the advanced time scaling atomistic approach is necessary to interpret the relaxation mechanisms at the experimental timescale. Here, we adopted autonomous basin climbing (ABC) to evaluate the long-time stress relaxation. At the same time, based on the energy minimization principle, we carried out simulations at continuum levels on the long-time stress relaxation kinetics of Cu-Zr metallic glass over timescales greater than 100 s. Combined with atomistic and continuum models, we demonstrate that a strain-dependent transition from compressed to stretched exponentials would happen, consistent with recent experimental observations on metallic glasses. Further examination of the spatial and temporal correlations of stress and plastic strain reveals two predominant driving forces: the thermal energy gradient governs in the compressed regime and leads to a release of the local internal stress; in the stretched regime, the strain energy gradient rules and causes long-range structural rearrangements. The discovery of the competition between two driving forces advances our understanding of the nature of aging dynamics in disordered solids.","PeriodicalId":18648,"journal":{"name":"Modelling and Simulation in Materials Science and Engineering","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139833972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Elastic interactions between screw dislocations in iron","authors":"Daniel Caillard","doi":"10.1088/1361-651x/ad29b0","DOIUrl":"https://doi.org/10.1088/1361-651x/ad29b0","url":null,"abstract":"\u0000 The kinetics of elastically interacting screw dislocations has been studied in pure iron strained in situ at low temperature. Annihilating and expanding screw dipoles yield macroscopic activation areas which are substantially smaller than those deduced from conventional mechanical stress, but consistent with theoretical estimates.The kinetics of attractive intersecting screw dislocations indicates that their velocity is determined by the velocity of their most stressed parts. Repulsive screw dislocations with different Burgers vectors can move cooperatively at a surprisingly high velocity, probably on elastic torque interactions and twinning-anti-twinning effects. All these interactions are shown to play an important role in the description of macroscopic mechanical properties in terms of individual dislocation mechanisms.","PeriodicalId":18648,"journal":{"name":"Modelling and Simulation in Materials Science and Engineering","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139774127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sarnath Thoudham, P. Kumbhar, A. Kanjarla, R. Annabattula
{"title":"Study of crack propagation in multi-phase composites embedded with both stiff and compliant particles using phase field method","authors":"Sarnath Thoudham, P. Kumbhar, A. Kanjarla, R. Annabattula","doi":"10.1088/1361-651x/ad29ae","DOIUrl":"https://doi.org/10.1088/1361-651x/ad29ae","url":null,"abstract":"\u0000 Crack propagation in two-phase particle-reinforced composites is extensively studied using the phase field method. Typically, the particle either has a higher stiffness(stiff) or a lower stiffness(compliant) than the matrix. However, the crack propagation in multi-phase composites with both the stiff and compliant particles is not yet understood well. In this work, we report on the crack propagation characteristics and the resulting enhanced effective fracture toughness in multi-phase composite materials with both stiff and compliant particles using the phase filed method. Three different geometric arrangements of particles are considered: a diagonal array, a cubic array, and a honeycomb array. The honeycomb configuration had the best combination of strength and effective fracture toughness. We show that apart from the local geometric arrangement of the individual particles, the ratio of the stiffness of the individual particles is an important factor in crack propagation. Furthermore, we show that the ratio of the critical energy release rate of the individual particles can be tuned to increase the effective fracture toughness.","PeriodicalId":18648,"journal":{"name":"Modelling and Simulation in Materials Science and Engineering","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139774133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
C. Fressengeas, Tatiana Lebedkina, Mikhail Lebedkin
{"title":"Complex patterning in jerky flow from time series analysis and numerical simulation","authors":"C. Fressengeas, Tatiana Lebedkina, Mikhail Lebedkin","doi":"10.1088/1361-651x/ad29ad","DOIUrl":"https://doi.org/10.1088/1361-651x/ad29ad","url":null,"abstract":"\u0000 The paper is a tribute to Ladislas P. Kubin's long-standing work on the collective behavior of dislocations in jerky flow. In a first part, it reviews his contributions to the statistical, dynamical and multifractal analyses carried out on stress-time series recorded from both single crystals and polycrystalline samples of dilute alloys subjected to tensile tests at constant strain rate. Various spatio-temporal dynamical regimes were found as the applied strain rate was varied. Type C static bands were associated with quasi-random collective behavior, the hopping type B and propagating type A bands could be shown to correspond to chaotic and self-organized critical dynamics, respectively. The crossover between the A and B regimes was characterized by a large spread in the multifractal spectrum of stress drops, associated with heterogeneity of the dynamics. In a second part, the paper reviews the nonlocal models Ladislas inspired to interpret these results from numerical solutions of the boundary value problem, on the basis of dynamic strain aging, the incompatibility stresses associated with dislocations, their plastic relaxation and the spatial couplings they inherently involve. Eventual developments of this research, rooted in the same ideas, on the statistical and multifractal analyses of the accompanying acoustic emission are reviewed and discussed in terms of the synchronization of small-scale plastic events.","PeriodicalId":18648,"journal":{"name":"Modelling and Simulation in Materials Science and Engineering","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139836234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Simulations of the effect of shot peening backstress on nanoindentation","authors":"Hui Chen, P. Kanouté, Manuel Francois","doi":"10.1088/1361-651x/ad29b2","DOIUrl":"https://doi.org/10.1088/1361-651x/ad29b2","url":null,"abstract":"\u0000 Shot peening is a mechanical surface treatment that can introduce compressive residual stress and work hardening simultaneously. This work hardening, considered as a modification of the elastic region with plastic strain, can be modelled with two types of contributions: isotropic hardening and kinematic hardening. In order to characterize the mechanical properties of the treated surface using the instrumented indentation technique, the effect of the backstress associated with kinematic hardening should be studied, especially for works related to fatigue loading. In this paper, the distribution of three backstress components is obtained by shot peening simulations on a nickel-based alloy, Inconel 718, commonly used in the aerospace industry, and a series of indentation simulations are carried out using a spherical tip with different equivalent backstress levels. For Inconel 718, the third backstress component, which has the slowest evolution rate, is found to have the most significant influence on the response. However, compared to the effect of residual stress and cumulated plastic strain, the effect of backstress can be neglected.","PeriodicalId":18648,"journal":{"name":"Modelling and Simulation in Materials Science and Engineering","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139774918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sarnath Thoudham, P. Kumbhar, A. Kanjarla, R. Annabattula
{"title":"Study of crack propagation in multi-phase composites embedded with both stiff and compliant particles using phase field method","authors":"Sarnath Thoudham, P. Kumbhar, A. Kanjarla, R. Annabattula","doi":"10.1088/1361-651x/ad29ae","DOIUrl":"https://doi.org/10.1088/1361-651x/ad29ae","url":null,"abstract":"\u0000 Crack propagation in two-phase particle-reinforced composites is extensively studied using the phase field method. Typically, the particle either has a higher stiffness(stiff) or a lower stiffness(compliant) than the matrix. However, the crack propagation in multi-phase composites with both the stiff and compliant particles is not yet understood well. In this work, we report on the crack propagation characteristics and the resulting enhanced effective fracture toughness in multi-phase composite materials with both stiff and compliant particles using the phase filed method. Three different geometric arrangements of particles are considered: a diagonal array, a cubic array, and a honeycomb array. The honeycomb configuration had the best combination of strength and effective fracture toughness. We show that apart from the local geometric arrangement of the individual particles, the ratio of the stiffness of the individual particles is an important factor in crack propagation. Furthermore, we show that the ratio of the critical energy release rate of the individual particles can be tuned to increase the effective fracture toughness.","PeriodicalId":18648,"journal":{"name":"Modelling and Simulation in Materials Science and Engineering","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139833577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ming Li, Tao Zhang, Xing Fang, Du Zhou, Guoliang Xu, Xiaoming Huang
{"title":"Long-term sealing performance evaluation and service life prediction of O-rings under thermal-mechanical coupling conditions","authors":"Ming Li, Tao Zhang, Xing Fang, Du Zhou, Guoliang Xu, Xiaoming Huang","doi":"10.1088/1361-651x/ad290a","DOIUrl":"https://doi.org/10.1088/1361-651x/ad290a","url":null,"abstract":"\u0000 In service, thermal-mechanical coupling conditions can exacerbate stress relaxation of O-rings and lead to their thermal expansion, further complicating the sealing problem. A finite element method is developed to simulate the mechanical deformation behavior of O-rings under thermal-mechanical coupling conditions, and its validity is verified by comparison with experimental data. Based on a substantial amount of simulation data, it is found that a dimensionless contact stress can be used as an indicator of the degradation of sealing performance and can be related to temperature T and time τ in the form of an aging kinetic equation. By combining this equation with the existing interfacial leakage model, an approach of predicting the long-term leakage rate of O-rings is proposed to quantitatively evaluate the effect of various factors on the performance of O-rings, and some important conclusions are drawn. Regarding the effect of temperature on O-rings, the thermal expansion effect dominates when the service time is less than 20 days, and the stress relaxation effect prevails when it is greater than 20 days. The higher the temperature, the more significant the stress relaxation, and the faster the leakage rate of O-rings. Increasing the fluid pressure enhances the relaxation effect. Using the maximum allowable leakage rate as the failure criterion, a pressure-temperature curve is plotted representing the safety boundaries, which can be used to guide the design of the sealing structures. Furthermore, an exhaustive study on the service life evaluation shows that at high temperature (T ≥ 120 ℃), the service life curves show a plunging segment near a pressure rise to 0.42 MPa.","PeriodicalId":18648,"journal":{"name":"Modelling and Simulation in Materials Science and Engineering","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139840012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}