{"title":"Citation for 2021 Barringer Award to G. Osinski","authors":"Richard A. F. Grieve","doi":"10.1111/maps.14186","DOIUrl":"https://doi.org/10.1111/maps.14186","url":null,"abstract":"","PeriodicalId":18555,"journal":{"name":"Meteoritics & Planetary Science","volume":"59 S1","pages":"A479-A480"},"PeriodicalIF":2.2,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142077883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Devin L. Schrader, Jemma Davidson, Conel M. O'D Alexander, Martin R. Lee, Monica M. Grady
{"title":"Meteoritical Society Service Award citation for Richard C. Greenwood","authors":"Devin L. Schrader, Jemma Davidson, Conel M. O'D Alexander, Martin R. Lee, Monica M. Grady","doi":"10.1111/maps.14231","DOIUrl":"https://doi.org/10.1111/maps.14231","url":null,"abstract":"","PeriodicalId":18555,"journal":{"name":"Meteoritics & Planetary Science","volume":"59 S1","pages":"A486-A488"},"PeriodicalIF":2.2,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142077799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
T. J. Barrett, A. J. King, G. Degli-Alessandrini, S. J. Hammond, E. Humphreys-Williams, B. Schmidt, R. C. Greenwood, F. A. J. Abernethy, M. Anand, E. Rudnickaitė
{"title":"A mineralogical and isotopic study of the historic monomict eucrite Padvarninkai","authors":"T. J. Barrett, A. J. King, G. Degli-Alessandrini, S. J. Hammond, E. Humphreys-Williams, B. Schmidt, R. C. Greenwood, F. A. J. Abernethy, M. Anand, E. Rudnickaitė","doi":"10.1111/maps.14229","DOIUrl":"https://doi.org/10.1111/maps.14229","url":null,"abstract":"<p>The Padvarninkai meteorite is a relatively understudied eucrite, initially misclassified as a shergottite given its strong shock characteristics. In this study, a comprehensive examination of the petrology; mineral composition; major, minor, and trace element abundances; and isotopic composition (C, O) is presented. Padvarninkai is a monomict eucrite consisting of a fine to coarse-grained lithology and impact melt veins. Pyroxene grains are typically severely fractured and mosaicked whilst plagioclase is either partially or totally converted to maskelynite. Based on shock features observed in pyroxene, plagioclase, and apatite, Padvarninkai can be given a shock classification of M-S4/5. Despite the high shock experienced by this sample, some of the original igneous textures remain. Compositionally, Padvarninkai is a main group eucrite with a flat REE pattern (~10–12 × CI) and elevated Ni abundances. Whilst both new and literature oxygen isotopes are similar to other eucrites, however, Padvarninkai displays an anomalously high δ<sup>13</sup>C value. To reconcile the high Ni and δ<sup>13</sup>C value, impact contamination modeling was conducted. These models could not reconcile both the high Ni and δ<sup>13</sup>C value with the eucritic δ<sup>18</sup>O values, arguing against impact as a source for these anomalies.</p>","PeriodicalId":18555,"journal":{"name":"Meteoritics & Planetary Science","volume":"59 9","pages":"2505-2522"},"PeriodicalIF":2.2,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/maps.14229","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142170346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
H. C. Bates, R. Aspin, C. Y. Fu, C. S. Harrison, E. Feaver, E. Branagan-Harris, A. J. King, J. F. J. Bryson, S. Sridhar, C. I. O. Nichols
{"title":"Extent of alteration, paleomagnetic history, and infrared spectral properties of the Tarda ungrouped carbonaceous chondrite","authors":"H. C. Bates, R. Aspin, C. Y. Fu, C. S. Harrison, E. Feaver, E. Branagan-Harris, A. J. King, J. F. J. Bryson, S. Sridhar, C. I. O. Nichols","doi":"10.1111/maps.14224","DOIUrl":"10.1111/maps.14224","url":null,"abstract":"<p>Tarda is an ungrouped, hydrated carbonaceous chondrite (C2-ung) that was seen to fall in Morocco in 2020. Early studies showed that Tarda chemically resembles another ungrouped chondrite, Tagish Lake (C2-ung), which has previously been linked to the dark D-type asteroids. Samples of D-type asteroids provide an important opportunity to investigate primitive conditions in the outer solar system. We show that Tarda contains few intact chondrules and refractory inclusions and that its composition is dominated by secondary Mg-rich phyllosilicates (>70 vol%), carbonates, oxides, and Fe-sulfides that formed during extensive water–rock reactions. Quantitative assessment of first-order reversal curve (FORC) diagrams shows that Tarda's magnetic mineralogy (i.e., framboidal magnetite) is comparable to that of the CI chondrites and differs notably from that of most CM chondrites. These traits support a common formation process for magnetite in Tarda and the CI chondrites. Furthermore, Tarda's pre-terrestrial paleomagnetic remanence is similar to that of Tagish Lake and samples returned from asteroid Ryugu, with a very weak paleointensity (<0.6 μT) suggesting that Tarda's parent body accreted more distally than that of the CM chondrites, possibly at a distance of >5.4–8.3 AU. An origin in the cold, outer regions of the solar system is further supported by the presence of distinct, porous clasts enriched in aliphatic-rich organics that potentially retain a pristine interstellar composition. Together, our observations support a genetic relationship between Tarda and Tagish Lake.</p>","PeriodicalId":18555,"journal":{"name":"Meteoritics & Planetary Science","volume":"59 9","pages":"2411-2431"},"PeriodicalIF":2.2,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/maps.14224","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141342384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Denton S. Ebel, Marina E. Gemma, Samuel P. Alpert, Jasmine Bayron, Ana H. Lobo, Michael K. Weisberg
{"title":"Abundance, sizes, and major element compositions of components in CR and LL chondrites: Formation from single reservoirs","authors":"Denton S. Ebel, Marina E. Gemma, Samuel P. Alpert, Jasmine Bayron, Ana H. Lobo, Michael K. Weisberg","doi":"10.1111/maps.14191","DOIUrl":"10.1111/maps.14191","url":null,"abstract":"<p>Abundances, apparent sizes, and individual chemical compositions of chondrules, refractory inclusions, other objects, and surrounding matrix have been determined for Semarkona (LL3.00) and Renazzo (CR2) using consistent methods and criteria on X-ray element intensity maps. These represent the non-carbonaceous (NC, Semarkona) and carbonaceous chondrite (CC, Renazzo) superclans of chondrite types. We compare object and matrix abundances with similar data for CM, CO, K, and CV chondrites. We assess, pixel-by-pixel, the major element abundance in each object and in the entire matrix. We determine the abundance of “metallic chondrules” in LL chondrites. Chondrules with high Mg/Si and low Fe/Si and matrix carrying opposing ratios complement each other to make whole rocks with near-solar major element ratios in Renazzo. Similar Mg/Si and Fe/Si chondrule–matrix relationships are seen in Semarkona, which is within 11% of solar Mg/Si but significantly Fe-depleted. These results provide a robust constraint in support of single-reservoir models for chondrule formation and accretion, ruling out whole classes of astrophysical models and constraining processes of chondrite component formation and accretion into chondrite parent bodies.</p>","PeriodicalId":18555,"journal":{"name":"Meteoritics & Planetary Science","volume":"59 9","pages":"2276-2295"},"PeriodicalIF":2.2,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141360776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vincent Guigoz, Anthony Seret, Marc Portail, Ludovic Ferrière, Guy Libourel, Harold C. Connolly Jr, Dante S. Lauretta
{"title":"High-resolution cathodoluminescence of calcites from the Cold Bokkeveld chondrite: New insights on carbonatation processes in CM parent bodies","authors":"Vincent Guigoz, Anthony Seret, Marc Portail, Ludovic Ferrière, Guy Libourel, Harold C. Connolly Jr, Dante S. Lauretta","doi":"10.1111/maps.14225","DOIUrl":"10.1111/maps.14225","url":null,"abstract":"<p>Carbonates, as secondary minerals found in CM chondrites, have been widely employed for reconstructing the composition of the fluids from which they precipitated. They also offer valuable insights into the hydrothermal evolution of their parent bodies. In this study, we demonstrate that high-resolution cathodoluminescence (HR-CL) analyses of calcites derived from the brecciated Cold Bokkeveld CM2 chondrite can effectively reveal subtle compositional features and intricate zoning patterns. We have identified two distinct types of cathodoluminescence (CL) centers: a blue emission band (approximately 375–425 nm), associated with intrinsic structural defects, and a lower energy orange extrinsic emission (around 620 ± 10 nm), indicating the presence of Mn cations. These compositional variations enable discrimination between the calcite grain types previously designated as T1 and T2 in studies of CM chondrites. T1 calcites exhibit variable CL and peripheral Mn enrichments, consistently surrounded by a rim composed of Fe-S-rich serpentine–tochilinite assemblage. Conversely, T2 calcites display homogeneous CL and more abundant lattice defects. These polycrystalline aggregates of calcite grains, devoid of serpentine, contain Fe-Ni sulfide inclusions and directly interface with the matrix. We propose that changes in the Mn content of calcite (indicated by the intensity of orange CL emission) are influenced by variations in redox potential (Eh) and pH of the fluid phase. This proposed hydrothermal evolution establishes a parallel between terrestrial serpentinization followed by carbonation processes and the aqueous alteration of CM chondrites, warranting further exploration and investigation of this intriguing similarity.</p>","PeriodicalId":18555,"journal":{"name":"Meteoritics & Planetary Science","volume":"59 9","pages":"2432-2452"},"PeriodicalIF":2.2,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/maps.14225","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141355661","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Citation for Dr. Elishevah van Kooten for the 2024 Meteoritical Society Nier Prize Award","authors":"Martin Bizzarro","doi":"10.1111/maps.14226","DOIUrl":"10.1111/maps.14226","url":null,"abstract":"","PeriodicalId":18555,"journal":{"name":"Meteoritics & Planetary Science","volume":"59 S1","pages":"A481-A482"},"PeriodicalIF":2.2,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141358222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Differences in bulk Fe content and density between type I and type II ordinary chondrite chondrules: Implications for parent body heterogeneities in oxidation state and O-isotopic composition","authors":"Alan E. Rubin","doi":"10.1111/maps.14223","DOIUrl":"10.1111/maps.14223","url":null,"abstract":"<p>Type II chondrules have higher oxidation states than type I chondrules; in ordinary chondrites (OC), type II chondrules tend to be larger, richer in bulk Fe, and have higher densities than type I chondrules. Magnesian type IA chondrules tend to be richer in <sup>16</sup>O than type II chondrules. Because the aerodynamic behavior of a particle is a function of the product of its size and density, type I and type II chondrules (or their precursors) were partly separated in the ordinary chondrite zone of the solar nebula prior to the accretion of OC parent asteroids. LL chondrites acquired a chondrule population with the highest type II/type I ratios, L chondrites acquired chondrules with an intermediate ratio, and H chondrites acquired chondrules with the lowest type II/type I ratios. This contributed to the observed differences among OC groups in oxidation state and O-isotopic composition: in going from H to L to LL, mean oxidation state increases and mean Δ<sup>17</sup>O values increase. Higher oxidation is marked by increases in the FeO contents of olivine, low-Ca pyroxene, chromite, and ilmenite; increases in the TiO<sub>2</sub> content of chromite; and increases in the Co content of kamacite.</p>","PeriodicalId":18555,"journal":{"name":"Meteoritics & Planetary Science","volume":"59 9","pages":"2403-2410"},"PeriodicalIF":2.2,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/maps.14223","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141360882","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}