Meteoritics & Planetary Science最新文献

筛选
英文 中文
Cover 封面
IF 2.2 4区 地球科学
Meteoritics & Planetary Science Pub Date : 2024-10-11 DOI: 10.1111/maps.14020
{"title":"Cover","authors":"","doi":"10.1111/maps.14020","DOIUrl":"https://doi.org/10.1111/maps.14020","url":null,"abstract":"<p>\u0000 \u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":18555,"journal":{"name":"Meteoritics & Planetary Science","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/maps.14020","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142428956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
2018 Service Award for Linda Martel 授予琳达-马特尔 2018 年服务奖
IF 2.2 4区 地球科学
Meteoritics & Planetary Science Pub Date : 2024-09-11 DOI: 10.1111/maps.14265
G. Jeffrey Taylor
{"title":"2018 Service Award for Linda Martel","authors":"G. Jeffrey Taylor","doi":"10.1111/maps.14265","DOIUrl":"https://doi.org/10.1111/maps.14265","url":null,"abstract":"","PeriodicalId":18555,"journal":{"name":"Meteoritics & Planetary Science","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142429897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cover 封面
IF 2.2 4区 地球科学
Meteoritics & Planetary Science Pub Date : 2024-09-10 DOI: 10.1111/maps.14018
{"title":"Cover","authors":"","doi":"10.1111/maps.14018","DOIUrl":"https://doi.org/10.1111/maps.14018","url":null,"abstract":"<p>\u0000 \u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":18555,"journal":{"name":"Meteoritics & Planetary Science","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/maps.14018","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142170086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
2020 Service Award for Agnieszka Baier 阿格尼耶斯卡-拜尔 2020 年服务奖
IF 2.2 4区 地球科学
Meteoritics & Planetary Science Pub Date : 2024-09-08 DOI: 10.1111/maps.14262
Christian Koeberl
{"title":"2020 Service Award for Agnieszka Baier","authors":"Christian Koeberl","doi":"10.1111/maps.14262","DOIUrl":"https://doi.org/10.1111/maps.14262","url":null,"abstract":"","PeriodicalId":18555,"journal":{"name":"Meteoritics & Planetary Science","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142429390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Raman spectroscopy analysis of artificial space weathering effects of NWA 10580 CO3 meteorite NWA 10580 CO3 陨石人工空间风化效应的拉曼光谱分析
IF 2.2 4区 地球科学
Meteoritics & Planetary Science Pub Date : 2024-09-06 DOI: 10.1111/maps.14255
Ákos Kereszturi, Sándor Biri, Ildikó Gyollai, Zoltán Juhász, Csilla Király, Richárd Rácz, Dániel Rezes, Béla Sulik, Máté Szabó, Zoltán Szalai, Péter Szávai, Tamás Szklenár
{"title":"Raman spectroscopy analysis of artificial space weathering effects of NWA 10580 CO3 meteorite","authors":"Ákos Kereszturi,&nbsp;Sándor Biri,&nbsp;Ildikó Gyollai,&nbsp;Zoltán Juhász,&nbsp;Csilla Király,&nbsp;Richárd Rácz,&nbsp;Dániel Rezes,&nbsp;Béla Sulik,&nbsp;Máté Szabó,&nbsp;Zoltán Szalai,&nbsp;Péter Szávai,&nbsp;Tamás Szklenár","doi":"10.1111/maps.14255","DOIUrl":"https://doi.org/10.1111/maps.14255","url":null,"abstract":"<p>A medium-grade, poorly weathered CO3-type meteorite was subjected to artificial space weathering by 1 keV protons in three subsequent steps, with gradually increasing doses from 10<sup>11</sup> to 10<sup>17</sup> protons per cm<sup>2</sup>. The resulting mineral modifications were identified by Raman spectroscopy, with specific emphasis on main minerals such as olivine (bands: 817, 845 cm<sup>−1</sup>), pyroxene (1007 cm<sup>−1</sup>), and partly amorphous feldspar (509 cm<sup>−1</sup>), considering variation in band shift and bandwidth (full width at half maximum, FWHM). After the first and second irradiations, variable band position changes were observed, probably from metastable alterations by Mg loss of the minerals, while the third stronger irradiation showed band shift dominated by amorphization. The olivine and pyroxene show weak increase in FWHM after the first irradiation, while more changes happened after the second and third irradiations. The flux after the third irradiation was higher than in other works, caused stronger damage in crystal lattice, partly resembling to dimerization as described by shock metamorphism. The glassy feldspar was characterized by high FWHM values already at the beginning, indicating weak crystallinity already that become even less crystallized, thus their bands disappeared after the third irradiation. Bands of hydrous minerals (goethite clay, chlorite) were not visible after the third irradiation, confirming some earlier results in the literature. Based on our results, moderately fresh surfaces could show stochastic but small spectral differences compared to the fresh most meteorites by metastable mineral alterations. The interpretation of Raman spectra of heavily space-weathered surfaces could further benefit from the joint evaluation of alteration induced by both shock impact alteration and space weathering.</p>","PeriodicalId":18555,"journal":{"name":"Meteoritics & Planetary Science","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142429308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Atmospheric collection of extraterrestrial dust at the Earth's surface in the mid-Pacific 中太平洋地球表面地外尘埃的大气收集
IF 2.2 4区 地球科学
Meteoritics & Planetary Science Pub Date : 2024-09-06 DOI: 10.1111/maps.14251
Penelope J. Wozniakiewicz, Luke S. Alesbrook, John P. Bradley, Hope A. Ishii, Mark C. Price, Michael. E. Zolensky, Donald E. Brownlee, Matthias van Ginneken, Matthew J. Genge
{"title":"Atmospheric collection of extraterrestrial dust at the Earth's surface in the mid-Pacific","authors":"Penelope J. Wozniakiewicz,&nbsp;Luke S. Alesbrook,&nbsp;John P. Bradley,&nbsp;Hope A. Ishii,&nbsp;Mark C. Price,&nbsp;Michael. E. Zolensky,&nbsp;Donald E. Brownlee,&nbsp;Matthias van Ginneken,&nbsp;Matthew J. Genge","doi":"10.1111/maps.14251","DOIUrl":"https://doi.org/10.1111/maps.14251","url":null,"abstract":"<p>The Kwajalein micrometeorite collection utilized high volume air samplers fitted with polycarbonate membrane filters to capture particles directly from the atmosphere at the Earth's surface. This initial study focused on identifying cosmic spherule-like particles, conservatively categorizing them into four groups based on bulk compositional data: Group I exhibit a range of compositions designated terrestrial in origin; group II are Fe-rich and contain only additional O, S, and/or Ni; group III are silicate spherules with Mg-to-Si At% ratios less than 0.4; group IV are silicate spherules with Mg-to-Si At% ratios greater than 0.4. Spherules in groups I, II, and III have compositions that are also consistent with particles that are produced in great numbers by natural and/or anthropogenic terrestrial activities (e.g., volcanic microspherules, fly ash from coal fired power plants, etc.) and thus are assumed terrestrial in origin. Group IV spherules exhibit compositions closest to those of cosmic spherules identified in other collections and are, therefore, designated cosmic spherule candidates. Detailed analysis of seven group IV spherules found that whilst five exhibited morphology and compositions consistent with S-type cosmic spherules, two appear unique to this collection and could not be matched to either terrestrial or extraterrestrial spherules studied to date.</p>","PeriodicalId":18555,"journal":{"name":"Meteoritics & Planetary Science","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/maps.14251","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142429309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Shock melt in the Cold Bokkeveld CM2 carbonaceous chondrite and the response of C-complex asteroids to hypervelocity impacts Cold Bokkeveld CM2碳质软玉中的冲击熔体以及C-复合小行星对超高速撞击的反应
IF 2.2 4区 地球科学
Meteoritics & Planetary Science Pub Date : 2024-08-30 DOI: 10.1111/maps.14253
Martin R. Lee, Luke Daly, Jennika Greer, Sammy Griffin, Cameron J. Floyd, Levi Tegg, Julie Cairney
{"title":"Shock melt in the Cold Bokkeveld CM2 carbonaceous chondrite and the response of C-complex asteroids to hypervelocity impacts","authors":"Martin R. Lee,&nbsp;Luke Daly,&nbsp;Jennika Greer,&nbsp;Sammy Griffin,&nbsp;Cameron J. Floyd,&nbsp;Levi Tegg,&nbsp;Julie Cairney","doi":"10.1111/maps.14253","DOIUrl":"https://doi.org/10.1111/maps.14253","url":null,"abstract":"<p>Many of the CM carbonaceous chondrites are regolith breccias and so should have abundant evidence for collisional processing. The constituent clasts of these fragmental rocks frequently display compactional petrofabrics; yet, olivine microstructures show that most CMs are unshocked. To better understand the reasons for this contradiction, we have sought other evidence for hypervelocity impact processing of CM chondrites using the Cold Bokkeveld meteorite. We find that this regolith breccia contains rare particles of vesicular shock melt that are close in chemical composition to bulk CM chondrite. Transmission electron microscopy of a melt bead shows that it is composed of silicate glass with inclusions of pentlandite, pyrrhotite, and wüstite. Characterization of shards of another bead by atom probe tomography reveals nanoscale clusters of sulfur that represent sulfide inclusions arrested at an early stage of growth. These glass particles are mineralogically comparable to micrometeoroid impact melt described from the Cb-type asteroid Ryugu and melt that has been experimentally produced by pulsed laser irradiation of CM targets. The glass could have formed by in situ shock-melting, but petrographic evidence is more consistent with an origin as ballistic ejecta from a distal impact. The scarcity of melt in this meteorite, and CM chondrites more broadly, is consistent with the explosive fragmentation of hydrous asteroids following energetic collisions. Cold Bokkeveld's parent body is likely to be a second-generation asteroid that was constructed from the debris of one or more earlier bodies, and only a small proportion of the reaccreted material had been highly shocked and melted.</p>","PeriodicalId":18555,"journal":{"name":"Meteoritics & Planetary Science","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/maps.14253","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142430270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Micro- and nanoscale studies of insoluble organic matter and C-rich presolar grains in Murchison and Sutter's Mill in preparation for Bennu sample analysis 对默奇森和萨特磨坊中的不溶性有机物和富含C的前太阳晶粒进行微米级和纳米级研究,为贝努样本分析做准备
IF 2.2 4区 地球科学
Meteoritics & Planetary Science Pub Date : 2024-08-30 DOI: 10.1111/maps.14254
A. N. Nguyen, S. J. Clemett, K. Thomas-Keprta, C. M. O'D. Alexander, D. P. Glavin, J. P. Dworkin, H. C. Connolly Jr, D. S. Lauretta
{"title":"Micro- and nanoscale studies of insoluble organic matter and C-rich presolar grains in Murchison and Sutter's Mill in preparation for Bennu sample analysis","authors":"A. N. Nguyen,&nbsp;S. J. Clemett,&nbsp;K. Thomas-Keprta,&nbsp;C. M. O'D. Alexander,&nbsp;D. P. Glavin,&nbsp;J. P. Dworkin,&nbsp;H. C. Connolly Jr,&nbsp;D. S. Lauretta","doi":"10.1111/maps.14254","DOIUrl":"https://doi.org/10.1111/maps.14254","url":null,"abstract":"<p>Samples of B-type asteroid (101955) Bennu returned by the Origins, Spectral Interpretation, Resource Identification, and Security–Regolith Explorer (OSIRIS-REx) spacecraft will provide unique insight into the nature of carbonaceous asteroidal matter without the atmospheric entry heating or terrestrial weathering effects associated with meteoritic samples. Some of the Bennu samples will undergo characterization by X-ray computed tomography (XCT). To protect the pristine nature of the samples, it is important to understand any adverse effects that could result from irradiation during XCT analysis. We analyzed acid-insoluble residues produced from two powdered samples of the Murchison carbonaceous chondrite, one control and one XCT-scanned, to assess the impact on insoluble organic matter (IOM) and presolar grains. Using a suite of in situ analytical techniques (field-emission scanning electron microscopy, optical and ultraviolet fluorescence microscopy, microprobe two-step laser mass spectrometry, and nanoscale secondary ion mass spectrometry), we found that the two residues had indistinguishable chemical, molecular, and isotopic signatures on the micron to submicron scale, indicating that an X-ray dosage of 180 Gy (the maximum dose to be used during preliminary examination of Bennu materials) did not damage the IOM and presolar grains. To explore the use of acid-insoluble residues to infer parent body processes in preparation for Bennu sample analysis, we also analyzed a residue produced from the Sutter's Mill carbonaceous chondrite. Multiple lines of evidence, including severely degraded UV fluorescence signatures and D-rich hotspots, indicate that the parent body of Sutter's Mill was heated to &gt;400°C. This heating event was likely short lived because the abundance of presolar SiC grains, which are destroyed by thermal metamorphism and prolonged oxidation, was consistent with those in Murchison and other unheated chondrites. The results of these in situ analyses of acid-insoluble residues from Murchison and Sutter's Mill provide complementary detail to bulk analyses.</p>","PeriodicalId":18555,"journal":{"name":"Meteoritics & Planetary Science","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/maps.14254","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142430390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cosmic-ray exposure age accumulated in near-Earth space: A carbonaceous chondrite case study 近地空间积累的宇宙射线暴露年龄:碳质软玉案例研究
IF 2.2 4区 地球科学
Meteoritics & Planetary Science Pub Date : 2024-08-27 DOI: 10.1111/maps.14246
Patrick M. Shober, Marc W. Caffee, Phil A. Bland
{"title":"Cosmic-ray exposure age accumulated in near-Earth space: A carbonaceous chondrite case study","authors":"Patrick M. Shober,&nbsp;Marc W. Caffee,&nbsp;Phil A. Bland","doi":"10.1111/maps.14246","DOIUrl":"https://doi.org/10.1111/maps.14246","url":null,"abstract":"<p>This study investigates the expected cosmic-ray exposure (CRE) of meteorites if they were to be ejected by a near-Earth object, that is, from an object already transferred to an Earth-crossing orbit by an orbital resonance. Specifically, we examine the CRE ages of CI and CM carbonaceous chondrites (CCs), which have some of the shortest measured CRE ages of any meteorite type. A steady-state near-Earth carbonaceous meteoroid probability density function is estimated based on the low-albedo near-Earth asteroid population, including parameters such as the near-Earth dynamic lifetime, the impact probability with the Earth, and the orbital parameters. This model was then compared to the orbits and CRE ages of the five CC falls with precisely measured orbits: Tagish Lake, Maribo, Sutter's Mill, Flensburg, and Winchcombe. The study examined two meteoroid ejection scenarios for CI/CM meteoroids: Main Belt collisions and ejections in near-Earth space. The results indicated that applying a maximum physical lifetime in near-Earth space of 2–10 Myr to meteoroids and eliminating events evolving onto orbits entirely detached from the Main Belt (<i>Q</i> &lt; 1.78 au) significantly improved the agreement with the observed orbits of carbonaceous falls. Additionally, the CRE ages of three of the five carbonaceous falls have measured CRE ages one to three orders of magnitude shorter than expected for an object originating from the Main Belt with the corresponding semi-major axis value. This discrepancy between the expected CRE ages from the model and the measured ages of three of the carbonaceous falls indicates that some CI/CM meteoroids are being ejected in near-Earth space. This study proposes a nuanced hypothesis involving meteoroid impacts and tidal disruptions as significant contributors to the ejection and subsequent CRE age accumulation of CI/CM chondrites in near-Earth space.</p>","PeriodicalId":18555,"journal":{"name":"Meteoritics & Planetary Science","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142430248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
86th Annual Meeting of the Meteoritical Society (2024) 第 86 届气象学会年会(2024 年)
IF 2.2 4区 地球科学
Meteoritics & Planetary Science Pub Date : 2024-08-25 DOI: 10.1111/maps.14240
{"title":"86th Annual Meeting of the Meteoritical Society (2024)","authors":"","doi":"10.1111/maps.14240","DOIUrl":"https://doi.org/10.1111/maps.14240","url":null,"abstract":"","PeriodicalId":18555,"journal":{"name":"Meteoritics & Planetary Science","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/maps.14240","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142077864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信