MicroPub Date : 2023-11-12DOI: 10.3390/micro3040059
Gayan W. C. Kumarage, Ruwan P. Wijesundera, Elisabetta Comini, Buddhika S. Dassanayake
{"title":"Enhancing the Photovoltaic Performance of Cd(1−x)ZnxS Thin Films Using Seed Assistance and EDTA Treatment","authors":"Gayan W. C. Kumarage, Ruwan P. Wijesundera, Elisabetta Comini, Buddhika S. Dassanayake","doi":"10.3390/micro3040059","DOIUrl":"https://doi.org/10.3390/micro3040059","url":null,"abstract":"This research article provides a comprehensive investigation into the optoelectronic characteristics of three distinct types of cadmium sulfide (CdS) thin films, namely: (a) conventionally prepared CdS thin films using chemical bath deposition (CBD-CdS), (b) CdS thin films produced via chemical bath deposition with the inclusion of zinc (CBD-Cd(1−x)ZnxS, x = 0.3), and (c) CdS thin films synthesized using a seed-assisted approach, treated with ethylenediaminetetraacetic acid (EDTA), and incorporating zinc (ED/CBD + EDTA-Cd(1−x)ZnxS). The investigation reveals that the crystallite size of these thin films decreases upon the addition of EDTA to the reaction solution, leading to an increase in the inter-planar spacing and dislocation density. Furthermore, a blue shift in the transmittance edge of the ED/CBD + EDTA-Cd(1−x)ZnxS samples compared to CBD-CdS implies modifications in the band gaps of the deposited films. The incorporation of Zn2+ into the reaction solution results in an increased band gap value of up to 2.42 eV. This suggests that Cd(1−x)ZnxS thin films permit more efficient photon transmission compared to conventional CdS. Among the three types of films studied, ED/CBD + EDTA-Cd(1−x)ZnxS exhibits the highest optical band gap of 2.50 eV. This increase in the optical band gap is attributed to the smaller crystallite size and the splitting of the tail levels from the band structure. Additionally, the increment in the optical band gap leads to reduced light absorption at longer wavelengths, thereby enhancing the electrical properties. Notably, ED/CBD + EDTA-Cd(1−x)ZnxS thin films demonstrate improved photovoltaic performance in a photoelectrochemical (PEC) cell, characterized by enhanced open-circuit voltage (363 mV, VOC), short-circuit current (35.35 μA, ISC), and flat-band voltage (−692 mV, Vfb). These improvements are attributed to the better adhesion of CdS to the fluorine-doped tin oxide (FTO) substrate and improved inter-particle connectivity.","PeriodicalId":18535,"journal":{"name":"Micro","volume":"24 11","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135037188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Microfluidic Devices for Precision Nanoparticle Production","authors":"Ayşenur Bezelya, Berrin Küçüktürkmen, Asuman Bozkır","doi":"10.3390/micro3040058","DOIUrl":"https://doi.org/10.3390/micro3040058","url":null,"abstract":"In recent years, the field of drug delivery has seen a significant shift towards the exploration and utilization of nanoparticles (NPs) as versatile carriers for therapeutic agents. With its ability to provide exact control over NPs’ characteristics, microfluidics has emerged as a potent platform for the efficient and controlled synthesis of NPs. Microfluidic devices designed for precise fluid manipulation at the micro-scale offer a unique platform for tailoring NP properties, enabling enhanced control over NP properties such as size, morphology, and size distribution while ensuring high batch-to-batch reproducibility. Microfluidics can be used to produce liposomes, solid lipid nanoparticles, polymer-based NPs, and lipid-polymer hybrid NPs, as well as a variety of inorganic NPs such as silica, metal, metal oxide, quantum dots, and carbon-based NPs, offering precise control over composition and surface properties. Its unique precision in tailoring NP properties holds great promise for advancing NP-based drug delivery systems in both clinical and industrial settings. Although challenges with large-scale production still remain, microfluidics offers a transformative approach to NP synthesis. In this review, starting from the historical development of microfluidic systems, the materials used to create the systems, microfabrication methods, and system components will be discussed in order to provide the reader with an overview of microfluidic systems. In the following, studies on the fabrication of nanoparticles such as lipid NPs, polymeric NPs, and inorganic NPs in microfluidic devices are included.","PeriodicalId":18535,"journal":{"name":"Micro","volume":"196 ","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135871076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MicroPub Date : 2023-10-26DOI: 10.3390/micro3040057
Roufaida Bensalem, Mohannad Y. Elsayed, Hani H. Tawfik, Frederic Nabki, Mourad N. El-Gamal
{"title":"Enhancing Linearity in Parallel-Plate MEMS Varactors through Repulsive Actuation","authors":"Roufaida Bensalem, Mohannad Y. Elsayed, Hani H. Tawfik, Frederic Nabki, Mourad N. El-Gamal","doi":"10.3390/micro3040057","DOIUrl":"https://doi.org/10.3390/micro3040057","url":null,"abstract":"This paper presents a new MEMS varactor that uses repulsive actuation to achieve an ultra-linear capacitance-to-voltage response. The approach proposed involves actuating the moveable electrode away from the fixed electrode, instead of the conventional closing-the-gap direction. This increasing-gap movement reduces the capacitance as the actuation voltage increases. The MEMS variable capacitor is fabricated using PolyMUMPs technology and exhibits an excellent linearity factor of 99.7% in capacitance-to-voltage response, and a capacitance tuning ratio of 11× was achieved. The proposed strategy will enable the development of high-performance MEMS-based tunable devices for various applications.","PeriodicalId":18535,"journal":{"name":"Micro","volume":"3 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134908069","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MicroPub Date : 2023-10-24DOI: 10.3390/micro3040056
Ashutosh Kumar, Jun Hatayama, Nassim Rahmani, Constantine Anagnostopoulos, Mohammad Faghri
{"title":"Dynamic Response of Paper-Based Bi-Material Cantilever Actuator","authors":"Ashutosh Kumar, Jun Hatayama, Nassim Rahmani, Constantine Anagnostopoulos, Mohammad Faghri","doi":"10.3390/micro3040056","DOIUrl":"https://doi.org/10.3390/micro3040056","url":null,"abstract":"This work presents a dynamic modeling approach for analyzing the behavior of a bi-material cantilever actuator structure, consisting of a strip of filter paper bonded to a strip of tape. The actuator’s response is induced by a mismatch strain generated upon wetting, leading to the bending of the cantilever. The study delves into a comprehensive exploration of the dynamic deflection characteristics of the bilayer structure. It untangles the intricate connections among the saturation, modulus, hygro-expansion strain, and deflection, while uniquely addressing the challenges stemming from fluid–structure coupling. To solve the coupled fluid–solid differential equations, a combined numerical method is employed. This involves the application of the Highly Simplified Marker and Cell (HSMAC) technique for fluid flow analysis and the Finite Difference Method (FDM) for response deflection computation. In terms of the capillary flow model, the Computational Fluid Dynamics (CFD) simulations closely align with the classical Washburn relationship, depicting the wetted front’s evolution over time. Furthermore, the numerical findings demonstrate that heightened saturation levels trigger an increase in hygro-expansion strain, consequently leading to a rapid rise in response deflection until a static equilibrium is achieved. This phenomenon underscores the pivotal interplay among saturation, hygro-expansion strain, and deflection within the system. Additionally, the actuator’s response sensitivity to material characteristics is highlighted. As the mismatch strain evolving from paper hygro-expansion diminishes, a corresponding reduction in the axial strain causes a decrease in response deflection. The dynamic parameter demonstrates that the deflection response of the bilayer actuator diminishes as dynamic pressure decreases, reaching a minimal level beyond which further changes are negligible. This intricate correlation underscores the device’s responsiveness to specific material traits, offering prospects for precise behavior tuning. The dependence of paper modulus on saturation levels is revealed to significantly influence bilayer actuator deflection. With higher saturation content, the modulus decreases, resulting in amplified deflection. Finally, strong concordance is observed among the present fluidically coupled model, the static model, and empirical data—a testament to the accuracy of the numerical formulation and results presented in this study.","PeriodicalId":18535,"journal":{"name":"Micro","volume":"66 8","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135316420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Improved Properties of Post-Deposition Annealed Ga2O3/SiC and Ga2O3/Al2O3/SiC Back-Gate Transistors Fabricated by Radio Frequency Sputtering","authors":"Hee-Jae Lee, Geon-Hee Lee, Seung-Hwan Chung, Dong-Wook Byun, Michael A. Schweitz, Dae Hwan Chun, Nack Yong Joo, Minwho Lim, Tobias Erlbacher, Sang-Mo Koo","doi":"10.3390/micro3040055","DOIUrl":"https://doi.org/10.3390/micro3040055","url":null,"abstract":"The high breakdown electric field, n-type doping capability, availability of high-quality substrates, and high Baliga’s figure of merit of Ga2O3 demonstrate its potential as a next-generation power semiconductor material. However, the thermal conductivity of Ga2O3 is lower than that of other wide-bandgap materials, resulting in the degradation of the electrical performance and reduced reliability of devices. The heterostructure formation on substrates with high thermal conductivity has been noted to facilitate heat dissipation in devices. In this work, Ga2O3 thin films with an Al2O3 interlayer were deposited on SiC substrates by radio frequency sputtering. Post-deposition annealing was performed at 900 °C for 1 h to crystallize the Ga2O3 thin films. The Auger electron spectroscopy depth profiles revealed the interdiffusion of the Ga and Al atoms at the Ga2O3/Al2O3 interface after annealing. The X-ray diffraction (XRD) results displayed improved crystallinity after annealing and adding the Al2O3 interlayer. The crystallite size increased from 5.72 to 8.09 nm as calculated by the Scherrer equation using the full width at half maximum (FWHM). The carrier mobility was enhanced from 5.31 to 28.39 cm2 V−1 s−1 in the annealed Ga2O3 thin films on Al2O3/SiC. The transfer and output characteristics of the Ga2O3/SiC and Ga2O3/Al2O3/SiC back-gate transistors reflect the trend of the XRD and Hall measurement results. Therefore, this work demonstrated that the physical and electrical properties of the Ga2O3/SiC back-gate transistors can be improved by post-deposition annealing and the introduction of an Al2O3 interlayer.","PeriodicalId":18535,"journal":{"name":"Micro","volume":"13 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136343923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MicroPub Date : 2023-09-29DOI: 10.3390/micro3040054
Sakib Islam, Jie Wu
{"title":"Optimization of Planar Interdigitated Microelectrode Array for Enhanced Sensor Responses","authors":"Sakib Islam, Jie Wu","doi":"10.3390/micro3040054","DOIUrl":"https://doi.org/10.3390/micro3040054","url":null,"abstract":"Immunoassays play a pivotal role in detecting and quantifying specific proteins within biological samples. However, its sensitivity and turnaround time are constrained by the passive diffusion of target molecules towards the sensors. ACET (Alternating Current Electrothermal) enhanced reaction emerges as a solution to overcome this limitation. The ACET-enhanced biosensor works by inducing vortices through electrothermal force, which stirs the analyte within the microchannel and promotes a reaction process. In this study, a comprehensive two-dimensional finite element study is conducted to optimize the binding efficiency and detection time of an ACET-enhanced biosensor without external pumping. Optimal geometries for interdigitated electrodes are estimated to achieve significant improvements in terms of probe utilization and enhancement factor. The study’s findings demonstrate enhancement factors of 3.21, 2.15, and 3.09 along with 71.22%, 75.80%, and 57.52% normalized binding for C-reactive protein (CRP), immunoglobulin (IgG), and SARS-CoV-2, respectively.","PeriodicalId":18535,"journal":{"name":"Micro","volume":"61 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135246569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MicroPub Date : 2023-09-21DOI: 10.3390/micro3030053
Vuk Uskoković
{"title":"Paving Way for a Paradigm Shift in Oncology: Curing Cancer by Loving It?","authors":"Vuk Uskoković","doi":"10.3390/micro3030053","DOIUrl":"https://doi.org/10.3390/micro3030053","url":null,"abstract":"Plateaus in the efficacy of traditional methods for the treatment of cancer reached in the last decades call for the exploration of alternative models as their potential clinical complements. Here, the classical view of cancer as a tissue that is to be eradicated by methods describable by a compendium of militaristic metaphors is being challenged with a provocative idea: what if cancer can be cured with love condensed down to the level of molecular and cell biology? Correspondingly, the idea that love mimics the traits of the objects of its affection and helps them grow was translated to the level of cell biology by incorporating anti-apoptotic properties in healthy cells and promoting tumorigenesis in cancerous cells. Both the indirect and direct co-culture of the two cell types demonstrated hindered growth of cancer cells relative to that of their primary counterparts when these cellular modifications inspired by love for cancer were being implemented. The two experimental models reported here are emphasized as crude and simplistic methods derived from the idea that cancer may be best treated by being loved at the cellular and molecular biology levels. More comprehensive and effective methods may emanate from continued exploration and expansion of the intriguing and innovative avenue for cancer management proposed here.","PeriodicalId":18535,"journal":{"name":"Micro","volume":"61 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136236650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Advanced Technologies in the Fabrication of a Micro-Optical Light Splitter","authors":"Giovanna Stella, Lorena Saitta, Alfredo Edoardo Ongaro, Gianluca Cicala, Maïwenn Kersaudy-Kerhoas, Maide Bucolo","doi":"10.3390/micro3010023","DOIUrl":"https://doi.org/10.3390/micro3010023","url":null,"abstract":"In microfluidics, it is important to confine and transport light as close as possible to the sample by guiding it into a small volume of the microfluidic channel, acquiring the emitted/transmitted radiation. A challenge in this context is the miniaturization of the optical components and their integration into the microfluidic device. Among all of the optical components, a particular role is played by the beam splitter, an important optical device capable of splitting light into several paths. In this paper, a micro-splitter is designed and realized by exploiting low-cost technologies. The micro-splitter consists of a micro-mirror in-between two micro-waveguides. This component was fabricated in different materials: poly-dimethyl-siloxane (PDMS), poly(methyl methacrylate) (PMMA), and VeroClear RGD810. A 3D printing master–slave fabrication protocol was used with PDMS, a direct 3D printing approach with VeroClear, and a laser cutting procedure with PMMA. The experimental results obtained show the high potential of the proposed fabrication protocols, based on low-cost technologies, for the realization of micro-optical components, which could also be easily integrated with microfluidics systems.","PeriodicalId":18535,"journal":{"name":"Micro","volume":"44 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136095405","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MicroPub Date : 2022-11-21DOI: 10.1109/CINTI-MACRo57952.2022.10029513
Kamilla Novák, L. Kovács, D. Drexler, GyuRgy Eigner
{"title":"Glycemic control metrics for in silico testing of artificial pancreas systems","authors":"Kamilla Novák, L. Kovács, D. Drexler, GyuRgy Eigner","doi":"10.1109/CINTI-MACRo57952.2022.10029513","DOIUrl":"https://doi.org/10.1109/CINTI-MACRo57952.2022.10029513","url":null,"abstract":"People with diabetes, clinicians and researchers alike need appropriate metrics to manage diabetes, assess the quality of blood glucose control, and guide the development of new therapies and control methods. In this paper, we review some commonly used metrics with their advantages and disadvantages. We analyze the glucose data of a CGM user to compare the results of different metrics and determine which of these gives the most complete picture of glycemic control in silico trials of artificial pancreas systems.","PeriodicalId":18535,"journal":{"name":"Micro","volume":"20 1","pages":"000287-000292"},"PeriodicalIF":0.0,"publicationDate":"2022-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78613286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MicroPub Date : 2022-11-21DOI: 10.1109/CINTI-MACRo57952.2022.10029592
Suryakant Tyagi, Annamaria R. Varkonyi, Takacs Marta, S. Szénási
{"title":"A Review on Emotion Based Harmful Speech Detection Using Machine Learning","authors":"Suryakant Tyagi, Annamaria R. Varkonyi, Takacs Marta, S. Szénási","doi":"10.1109/CINTI-MACRo57952.2022.10029592","DOIUrl":"https://doi.org/10.1109/CINTI-MACRo57952.2022.10029592","url":null,"abstract":"The paper represents the state-of-the-art review of the machine learning methods for hate speech detection. This paper reviews novel applications of machine learning algorithms in hate speech. The machine learning based three algorithms i.e., Long-Short Term Memory, random forest, convolution neural network found to be most useful in hate speech detection. These algorithms are found to be most useful for twitter, Facebook, and other social platforms. This paper briefly surveys the most usable deep learning algorithms for detecting the hate speech in Arabic, English, Hindi, and other languages. The review result shows that the mentioned machine learning algorithms give an excellent results over other deep learning algorithm. Therefore, these three algorithms are widely acceptable for the evaluation of hate speech.","PeriodicalId":18535,"journal":{"name":"Micro","volume":"41 1","pages":"000017-000024"},"PeriodicalIF":0.0,"publicationDate":"2022-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82720065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}