A Review on Emotion Based Harmful Speech Detection Using Machine Learning

Suryakant Tyagi, Annamaria R. Varkonyi, Takacs Marta, S. Szénási
{"title":"A Review on Emotion Based Harmful Speech Detection Using Machine Learning","authors":"Suryakant Tyagi, Annamaria R. Varkonyi, Takacs Marta, S. Szénási","doi":"10.1109/CINTI-MACRo57952.2022.10029592","DOIUrl":null,"url":null,"abstract":"The paper represents the state-of-the-art review of the machine learning methods for hate speech detection. This paper reviews novel applications of machine learning algorithms in hate speech. The machine learning based three algorithms i.e., Long-Short Term Memory, random forest, convolution neural network found to be most useful in hate speech detection. These algorithms are found to be most useful for twitter, Facebook, and other social platforms. This paper briefly surveys the most usable deep learning algorithms for detecting the hate speech in Arabic, English, Hindi, and other languages. The review result shows that the mentioned machine learning algorithms give an excellent results over other deep learning algorithm. Therefore, these three algorithms are widely acceptable for the evaluation of hate speech.","PeriodicalId":18535,"journal":{"name":"Micro","volume":"41 1","pages":"000017-000024"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CINTI-MACRo57952.2022.10029592","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The paper represents the state-of-the-art review of the machine learning methods for hate speech detection. This paper reviews novel applications of machine learning algorithms in hate speech. The machine learning based three algorithms i.e., Long-Short Term Memory, random forest, convolution neural network found to be most useful in hate speech detection. These algorithms are found to be most useful for twitter, Facebook, and other social platforms. This paper briefly surveys the most usable deep learning algorithms for detecting the hate speech in Arabic, English, Hindi, and other languages. The review result shows that the mentioned machine learning algorithms give an excellent results over other deep learning algorithm. Therefore, these three algorithms are widely acceptable for the evaluation of hate speech.
基于情感的机器学习有害语音检测研究进展
这篇论文代表了仇恨言论检测的机器学习方法的最新进展。本文综述了机器学习算法在仇恨言论中的新应用。基于长短期记忆、随机森林、卷积神经网络三种算法的机器学习在仇恨言论检测中被发现是最有用的。这些算法被发现对twitter、Facebook和其他社交平台最有用。本文简要介绍了用于检测阿拉伯语、英语、印地语和其他语言的仇恨言论的最实用的深度学习算法。回顾结果表明,上述机器学习算法比其他深度学习算法具有更好的效果。因此,这三种算法被广泛接受用于仇恨言论的评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信