Rohit Patel , Sanjay Kumar , Johnna F. Varghese , Navneendra Singh , Rana P. Singh , Umesh C.S. Yadav
{"title":"Silymarin prevents endothelial dysfunction by upregulating Erk-5 in oxidized LDL exposed endothelial cells","authors":"Rohit Patel , Sanjay Kumar , Johnna F. Varghese , Navneendra Singh , Rana P. Singh , Umesh C.S. Yadav","doi":"10.1016/j.mvr.2024.104667","DOIUrl":"10.1016/j.mvr.2024.104667","url":null,"abstract":"<div><p>Extracellular signal-regulated kinase (Erk)-5 is a key mediator of endothelial cell homeostasis, and its inhibition causes loss of critical endothelial markers leading to endothelial dysfunction (ED). Circulating oxidized low-density lipoprotein (oxLDL) has been identified as an underlying cause of ED and atherosclerosis in metabolic disorders. Silymarin (Sym), a flavonolignan, possesses various pharmacological activities however its preventive mechanism in ED warrants further investigation. Here, we have examined the effects of Sym in regulating the expression of Erk-5 and ameliorating ED using <em>in vitro</em> and <em>in vivo</em> models. Primary human umbilical vein endothelial cells (pHUVECs) viability was measured by MTT assay; mRNA and protein expression by RT-qPCR and Western blotting; tube-formation assay was performed to examine endothelialness. In <em>in-vivo</em> experiments, normal chow-fed mice (control) or high-fat diet (HFD)-fed mice were administered Sym or Erk-5 inhibitor (BIX02189) and body weight, blood glucose, plasma-LDL, oxLDL levels, and expression of EC markers in the aorta were examined. Sym (5 μg/ml) maintained the viability and tube-formation ability of oxLDL exposed pHUVECs. Sym increased the expression of Erk-5, vWF, and eNOS and decreased ICAM-1 at transcription and translation levels in oxLDL-exposed pHUVECs. In HFD-fed mice, Sym reduced the body weight, blood glucose, LDL-cholesterol, and oxLDL levels, and increased the levels of vWF and eNOS along with Erk-5 and decreased the level of ICAM-1 in the aorta. These data suggest that Sym could be a potent anti-atherosclerotic agent that could elevate Erk-5 level in the ECs and prevent ED caused by oxidized LDL during HFD-induced obesity in mice.</p></div>","PeriodicalId":18534,"journal":{"name":"Microvascular research","volume":"153 ","pages":"Article 104667"},"PeriodicalIF":3.1,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139661316","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aida Ajan , Karin Roberg , Ingemar Fredriksson , Jahan Abtahi
{"title":"Reproducibility of Laser Doppler Flowmetry in gingival microcirculation. A study on six different protocols","authors":"Aida Ajan , Karin Roberg , Ingemar Fredriksson , Jahan Abtahi","doi":"10.1016/j.mvr.2024.104666","DOIUrl":"10.1016/j.mvr.2024.104666","url":null,"abstract":"<div><h3>Objectives</h3><p>Laser Doppler Flowmetry (LDF) is a non-invasive technique for the assessment of tissue blood flow, but increased reproducibility would facilitate longitudinal studies. The aim of the study was to assess the interday reproducibility of Laser Doppler Flowmetry (LDF) at rest, at elevated local temperatures, and with the use of the vasodilator Methyl Nicotinate (MN) in six interconnected protocols for the measurement of the blood supply to the microvascular bed of the gingiva.</p></div><div><h3>Methods</h3><p>Ten healthy volunteers were included. Interweek LDF measurements with custom-made acrylic splints were performed. Six protocols were applied in separate regions of interest (ROI): 1; basal LDF, 2; LDF with thermoprobe 42 °C, 3; LDF with thermoprobe 45 °C, 4; LDF with thermoprobe 42 °C and MN, 5; LDF with thermoprobe 45 °C and MN and 6; LDF with MN.</p></div><div><h3>Results</h3><p>Intra-individual reproducibility was assessed by the within-subject coefficient of variation (wCV) and the intraclass correlation coefficient (ICC). Basal LDF measurements demonstrated high reproducibility with wCV 11.1 in 2 min and 10.3 in 5 min. ICC was 0.9 and 0.92. wCV after heat and MN was 4.9–10.3 and ICC 0.82–0.93. The topically applied MN yielded increased blood flow.</p></div><div><h3>Conclusion</h3><p>This is the first study evaluating the reproducibility of basal LDF compared to single or multiple vasodilatory stimuli in gingiva. Multiple collector fibers probe and stabilizing acrylic splints are recommended. Vasodilatory stimulation showed a tendency toward higher reproducibility. Furthermore, MN yields vasodilation in gingiva.</p></div>","PeriodicalId":18534,"journal":{"name":"Microvascular research","volume":"153 ","pages":"Article 104666"},"PeriodicalIF":3.1,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0026286224000153/pdfft?md5=dbdab5af41c701f75c44eb89532ce89a&pid=1-s2.0-S0026286224000153-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139661334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Microvascular changes following exposure to iodinated contrast media in vitro. A qualitative comparison to serum creatinine concentrations in post-cardiac catheterization patients","authors":"Marine M.M. Magnusson , Ulrich Gerk , Gertraud Schüpbach , Juliane Rieger , Johanna Plendl , Ilka Marin , Barbara Drews , Sabine Kaessmeyer","doi":"10.1016/j.mvr.2024.104659","DOIUrl":"10.1016/j.mvr.2024.104659","url":null,"abstract":"<div><h3>Introduction</h3><p>Contrast-associated acute kidney injury (CA-AKI) is characterized as a loss of renal function following radiological contrast media administration. While all contrast media induce variable changes in microvascular endothelial cells <em>in vitro</em>, only few studies report clinical significance of their findings. A comprehensive assessment of the effect of iodinated contrast media on the renal function <em>in vitro</em> and <em>in vivo</em> is essential. The aim of our study was to morphometrically quantify the effect of two different contrast media (Iobitridol and Iodixanol) on vascular endothelial capillaries <em>in vitro</em> and to analyze their effect on the renal function of patients who underwent cardiac catheterization including the intra-arterial administration of contrast media, by measuring serum creatinine concentration (SCr), a byproduct of muscle metabolism, primarily excreted by the kidneys. Our hypothesis suggests that conducting a qualitative comparison of both outcomes will enable identification of differences and similarities between <em>in vitro</em> and <em>in vivo</em> exposure.</p></div><div><h3>Material and methods</h3><p><em>In vitro</em>, co-cultures of human dermal fibroblasts and human dermal microvascular endothelial cells forming capillary beds were exposed to a mixture of phosphate buffered saline and either Iobitridol, Iodixanol, or one of their supplements EDTA or Trometamol for 1.5 or 5 min. Negative control co-cultures were exposed exclusively to phosphate buffered saline. Co-cultures were either directly fixed or underwent a regeneration time of 1, 3 or 7 days. An artificial intelligence software was trained for detection of labeled endothelial capillaries (CD31) on light microscope images and measurements of morphometric parameters. <em>In vivo</em>, we retrospectively analyzed data from patients who underwent intra-arterial administration of contrast media and for whom SCr values were available pre- and post-contrast exposition (1, 3, and 7 days following procedure). Temporal development of SCr and incidence of CA-AKI were assessed. Both exposure types were qualitatively compared.</p></div><div><h3>Results</h3><p><em>In vitro</em>, Iobitridol, Iodixanol and EDTA induced a strong decrease of two morphometric parameters after 3 days of regeneration. <em>In vivo</em>, a significant increase of SCr and incidence of CA-AKI was observed 3 days following procedure in the post-contrast media patients. No difference was observed between groups.</p></div><div><h3>Discussion</h3><p>Two of the morphometric parameters were inversely proportional to the SCr of the patients. If the endothelial damages observed <em>in vitro</em> occur <em>in vivo</em>, it may result in renal hypoxia, inducing a loss of kidney function clinically translated into an increase of SCr. Further development of our <em>in vitro</em> model could allow closer replication of the internal structure of a kidney and bridge th","PeriodicalId":18534,"journal":{"name":"Microvascular research","volume":"153 ","pages":"Article 104659"},"PeriodicalIF":3.1,"publicationDate":"2024-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0026286224000086/pdfft?md5=6362bbed76593cccd9d7ecabb26c6c73&pid=1-s2.0-S0026286224000086-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139576193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jie Ma , Ran Xia , Yue Lan , Anqi Wang , Yaxing Zhang , Lihong Ma
{"title":"Angiographic microvascular resistance in patients with obstructive hypertrophic cardiomyopathy","authors":"Jie Ma , Ran Xia , Yue Lan , Anqi Wang , Yaxing Zhang , Lihong Ma","doi":"10.1016/j.mvr.2024.104656","DOIUrl":"10.1016/j.mvr.2024.104656","url":null,"abstract":"<div><h3>Background</h3><p>Coronary microvascular dysfunction (CMD) is an important feature of obstructive hypertrophic cardiomyopathy (oHCM). Angiographic microvascular resistance (AMR) offers a potent means for assessing CMD. This study sought to evaluate the prognostic value of CMD burden calculated by AMR among oHCM patients.</p></div><div><h3>Methods</h3><p>We retrospectively screened all patients diagnosed with oHCM from Fuwai Hospital between January 2017 and November 2021. Off-line AMR assessments were performed for all 3 major coronary vessels by the independent imaging core laboratory. Patients were followed every 6 months post discharge via office visit or telephone contacts. The primary outcome was major adverse cardiovascular events (MACE), including all-cause death, and unplanned rehospitalization for heart failure.</p></div><div><h3>Results</h3><p>A total of 342 patients presented with oHCM diseases enrolled in the present analyses. Mean age was 49.7, 57.6 % were men, mean 3-vessel AMR was 6.9. At a median follow-up of 18 months, high capability of 3-vessel AMR in predicting MACE was identified (AUC: 0.70) with the best cut-off value of 7.04. The primary endpoint of MACE was significantly higher in high microvascular resistance group (3-vessel AMR ≥ 7.04) as compared with low microvascular resistance group (56.5 % vs. 16.5 %; HR: 5.13; 95 % CI: 2.46–10.7; <em>p</em> < 0.001), which was mainly driven by the significantly higher risk of heart failure events in high microvascular resistance group. Additionally, 3-vessel AMR (HR: 4.37; 95 % CI: 1.99–9.58; <em>p</em> < 0.001), and age (per 1 year increase, HR: 1.03; 95 % CI: 1.01–1.06; <em>p</em> = 0.02) were independently associated with MACE.</p></div><div><h3>Conclusion</h3><p>The present retrospective study demonstrated that the novel angiography-based AMR was a useful tool for CMD evaluation among patients with oHCM. High microvascular resistance as identified by 3-vessel AMR (≥7.04) was associated with worse prognosis.</p></div>","PeriodicalId":18534,"journal":{"name":"Microvascular research","volume":"153 ","pages":"Article 104656"},"PeriodicalIF":3.1,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0026286224000050/pdfft?md5=0d8213b3b823deb4c2b588fb70a69445&pid=1-s2.0-S0026286224000050-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139557651","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dingqin Ou , Wenxia Xu , Zhaosen Feng, Yihan Yang, Wenqiang Xue, Qinyu Zhang, Xuan Li, Yuyang Zhu, Jie Huang, Yu Fang
{"title":"Vascular endothelial glycocalyx shedding in ventilator-induced lung injury in rats","authors":"Dingqin Ou , Wenxia Xu , Zhaosen Feng, Yihan Yang, Wenqiang Xue, Qinyu Zhang, Xuan Li, Yuyang Zhu, Jie Huang, Yu Fang","doi":"10.1016/j.mvr.2024.104658","DOIUrl":"10.1016/j.mvr.2024.104658","url":null,"abstract":"<div><p>Endothelial permeability deterioration is involved in ventilator-induced lung injury (VILI). The integrality of vascular endothelial glycocalyx<span><span> (EG) is closely associated with endothelial permeability. The hypothesis was that vascular EG shedding participates in VILI through promoting endothelial permeability. In the present study, male Sprague-Dawley (SD) rats were ventilated with high tidal volume<span> (VT =40 ml/kg) or low tidal volume (VT =8 ml/kg) to investigate the effects of different tidal volume and ventilation durations on EG in vivo. We report disruption of EG during the period of high tidal volume ventilation characterized by increased glycocalyx structural components (such as syndecan-1, heparan sulfate, hyaluronan) in the plasma and decreased the expression of syndecan-1 in the lung tissues. Mechanistically, the disruption of EG was associated with increased </span></span>proinflammatory cytokines<span> and matrix metalloproteinase<span> in the lung tissues. Collectively, these results demonstrate that the degradation of EG is involved in the occurrence and development of VILI in rats, and the inflammatory mechanism mediated by activation of the NF-κB signaling pathway may be partly responsible for the degradation of EG in VILI in rats. This study enhances our understanding of the pathophysiological processes underlying VILI, shedding light on potential therapeutic targets to mitigate VILI.</span></span></span></p></div>","PeriodicalId":18534,"journal":{"name":"Microvascular research","volume":"153 ","pages":"Article 104658"},"PeriodicalIF":3.1,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139546764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Christine Kang , Ah-Reum Cho , Haekyu Kim , Jae-Young Kwon , Hyeon Jeong Lee , Eunsoo Kim
{"title":"Sedation with propofol and isoflurane differs in terms of microcirculatory parameters: A randomized animal study using dorsal skinfold chamber mouse model","authors":"Christine Kang , Ah-Reum Cho , Haekyu Kim , Jae-Young Kwon , Hyeon Jeong Lee , Eunsoo Kim","doi":"10.1016/j.mvr.2024.104655","DOIUrl":"10.1016/j.mvr.2024.104655","url":null,"abstract":"<div><h3>Objective</h3><p>This study aimed to explore the effects of sedative doses of propofol and isoflurane on microcirculation in septic mice compared to controls. Isoflurane, known for its potential as a sedation drug in bedside applications, lacks clarity regarding its impact on the microcirculation system. The hypothesis was that propofol would exert a more pronounced influence on the microvascular flow index, particularly amplified in septic conditions.</p></div><div><h3>Material and methods</h3><p>Randomized study was conducted from December 2020 to October 2021 involved 60 BALB/c mice, with 52 mice analyzed. Dorsal skinfold chambers were implanted, followed by intraperitoneal injections of either sterile 0.9 % saline or lipopolysaccharide for the control and sepsis groups, respectively. Both groups received propofol or isoflurane treatment for 120 min. Microcirculatory parameters were obtained via incident dark-field microscopy videos, along with the mean blood pressure and heart rate at three time points: before sedation (T0), 30 min after sedation (T30), and 120 min after sedation (T120). Endothelial glycocalyx thickness and syndecan-1 concentration were also analyzed.</p></div><div><h3>Results</h3><p>In healthy controls, both anesthetics reduced blood pressure. However, propofol maintained microvascular flow, differing significantly from isoflurane at T120 (propofol, 2.8 ± 0.3 vs. isoflurane, 1.6 ± 0.9; <em>P <</em> 0.001). In the sepsis group, a similar pattern occurred at T120 without statistical significance (propofol, 1.8 ± 1.1 vs. isoflurane, 1.2 ± 0.7; <em>P =</em> 0.023). Syndecan-1 levels did not differ between agents, but glycocalyx thickness index was significantly lower in the isoflurane-sepsis group than propofol (<em>P =</em> 0.001).</p></div><div><h3>Conclusions</h3><p>Propofol potentially offers protective action against microvascular flow deterioration compared to isoflurane, observed in control mice. Furthermore, a lower degree of sepsis-induced glycocalyx degradation was evident with propofol compared to isoflurane.</p></div>","PeriodicalId":18534,"journal":{"name":"Microvascular research","volume":"153 ","pages":"Article 104655"},"PeriodicalIF":3.1,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0026286224000049/pdfft?md5=9386c111a44d4fbaa0e5cc10863b0dfa&pid=1-s2.0-S0026286224000049-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139476488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Electronic vape fluid activates the pulmonary endothelium and disrupts vascular integrity in vitro through an ARF6-dependent pathway","authors":"Evangelene Blackham-Hayward, Zsuzsanna Kertesz, Havovi Chichger","doi":"10.1016/j.mvr.2024.104653","DOIUrl":"10.1016/j.mvr.2024.104653","url":null,"abstract":"<div><p>The use of e-cigarettes or vapes is increasingly popular amongst a range of different demographics however the research in this area is surprisingly sparse. Clinical reports of e-cigarette- or vaping use-associated lung injury (EVALI) and vascular disruption, in both nicotine-containing and nicotine-free e-cigarette smokers, prompts the need for further research with a focus on the pulmonary endothelium. Using a common brand of e-cigarette (eVape) and an <em>in vitro</em> model of the human lung microvasculature, we investigated the effect of nicotine-free eVape fluid on pulmonary endothelial barrier integrity, oxidative stress and inflammation profile. Findings demonstrate reactive oxygen species-dependent breakdown of the pulmonary endothelium and release of inflammatory cytokines. These phenotypic changes, following exposure to nicotine-free eVape fluid, were accompanied by dysregulation of a number of adheren junctions-related genes of which ARF6 was most abundantly overexpressed. Further investigation of ARF6 identified it as a key regulator in eVape-induced barrier disruption and ROS accumulation. This study demonstrates, for the first time, the barrier disruptive effect of nicotine-free e-cigarette fluid on the pulmonary microvasculature and the ARF6 and ROS-dependent molecular mechanisms underlying this damage. Whilst these studies focus on a human <em>in vitro</em> model of the pulmonary microvasculature, the results support clinical case studies on EVALI and demonstrate a need for further investigation of the impact of nicotine-free e-cigarettes on the lung.</p></div>","PeriodicalId":18534,"journal":{"name":"Microvascular research","volume":"153 ","pages":"Article 104653"},"PeriodicalIF":3.1,"publicationDate":"2024-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0026286224000025/pdfft?md5=fe99d61364071c3dcc682155d7a1857f&pid=1-s2.0-S0026286224000025-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139462924","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Heleen Marynissen, Charlien Janssen, Dorien Bamps, Jan de Hoon
{"title":"Vascular read-out for TRP channel functionality on distal peripheral nerve endings in healthy men","authors":"Heleen Marynissen, Charlien Janssen, Dorien Bamps, Jan de Hoon","doi":"10.1016/j.mvr.2024.104654","DOIUrl":"10.1016/j.mvr.2024.104654","url":null,"abstract":"<div><h3>Background</h3><p><span>Quantification of the vasodilation<span><span> after topical application<span><span><span> of capsaicin or </span>cinnamaldehyde is often implemented to indirectly assess Transient Receptor Potential (TRP) Vanilloid 1 (TRPV1) or </span>Ankyrin 1 (TRPA1) functionality respectively. This method has been well-established on the human forearm. However, to enable </span></span>TRP functionality assessments in distal peripheral neuropathy, the </span></span>vascular response upon TRP activation on dorsal finger skin was characterized.</p></div><div><h3>Methods</h3><p>Two doses of cinnamaldehyde (3 % and 10 % v/v) and capsaicin (300 μg and 1000 μg) were topically applied (20 μL) on the skin of the mid three proximal phalanges in 17 healthy men. The dose-response, and inter-hand and inter-period reproducibility of the dermal blood flow (DBF) increase was assessed using Laser Speckle Contrast Imaging (LSCI) during 60 min post-application. Linear mixed models explored dose-driven differences, whereas the intra-class correlation coefficient (ICC) estimated the reproducibility of the vascular response.</p></div><div><h3>Results</h3><p>Both doses of cinnamaldehyde and capsaicin induced a robust, dose-dependent increase in DBF. The vascular response to cinnamaldehyde 10 % on finger skin, expressed as area under the curve, correlated well over time (ICC = 0.66) and excellently between hands (ICC = 0.87). Similarly, the response to capsaicin 1000 μg correlated moderately over time (ICC = 0.50) and well between hands (ICC = 0.73).</p></div><div><h3>Conclusion</h3><p>The vascular response upon topical cinnamaldehyde and capsaicin application on finger skin is an alternative approach for measurements on forearm skin. Thereby, it is a promising vascular read-out to investigate the pathophysiology<span>, and TRP involvement in particular, of specific peripheral neuropathic pain syndromes.</span></p></div>","PeriodicalId":18534,"journal":{"name":"Microvascular research","volume":"152 ","pages":"Article 104654"},"PeriodicalIF":3.1,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139432056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chunlin Zhu, Lina Miao, Kangkang Wei, Dazhuo Shi, Jie Gao
{"title":"Coronary microvascular dysfunction","authors":"Chunlin Zhu, Lina Miao, Kangkang Wei, Dazhuo Shi, Jie Gao","doi":"10.1016/j.mvr.2024.104652","DOIUrl":"10.1016/j.mvr.2024.104652","url":null,"abstract":"<div><p>Coronary microvascular dysfunction<span> (CMD) is a key mechanism underlying ischemic heart disease<span> (IHD), yet its diagnosis and treatment remain challenging. This article presents a comprehensive overview of CMD research, covering its pathogenesis, diagnostic criteria, assessment techniques, risk factors, and therapeutic strategies. Additionally, it highlights the prospects for future CMD research. The article aims at advocating early and effective intervention for CMD and improving the prognosis of IHD.</span></span></p></div>","PeriodicalId":18534,"journal":{"name":"Microvascular research","volume":"153 ","pages":"Article 104652"},"PeriodicalIF":3.1,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139425076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}