Metallurgical and Materials Transactions A最新文献

筛选
英文 中文
Recovery-Assisted Abnormal Grain Evolution of Selective Laser-Melted 316L Stainless Steel at Intermediate Temperatures 中温下选择性激光熔化 316L 不锈钢的恢复辅助异常晶粒演化
Metallurgical and Materials Transactions A Pub Date : 2024-09-12 DOI: 10.1007/s11661-024-07578-3
Yushi Xiao, Chao Wang, Yashan Zhang, Xinyi Liu, Chuntao Qin, Zhijun Wang, Xin Lin, Jincheng Wang, Lilin Wang, Feng He
{"title":"Recovery-Assisted Abnormal Grain Evolution of Selective Laser-Melted 316L Stainless Steel at Intermediate Temperatures","authors":"Yushi Xiao, Chao Wang, Yashan Zhang, Xinyi Liu, Chuntao Qin, Zhijun Wang, Xin Lin, Jincheng Wang, Lilin Wang, Feng He","doi":"10.1007/s11661-024-07578-3","DOIUrl":"https://doi.org/10.1007/s11661-024-07578-3","url":null,"abstract":"<p>Selective laser-melted 316L stainless steel (SLM 316L SS) holds significant potential for application in the energy and chemical sectors owing to its commendable mechanical properties and corrosion resistance. However, the intricate process of microstructure evolution in SLM 316L SS at intermediate temperatures, encompassing the feasible range of service temperatures, needs to be more adequately comprehended. This research endeavors to elucidate the grain size and distribution alterations between 750 °C and 850 °C. Abnormal grain growth before recrystallization and re-refinement phenomena were observed, which deviated from conventional expectations. The texture was found to play a crucial role in former, while recovery-induced dislocation rearrangement and recrystallization nuclei formation contributed to the latter process. These findings provide new insights into the thermodynamic behavior of SLM 316L SS at medium to high temperatures.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>","PeriodicalId":18504,"journal":{"name":"Metallurgical and Materials Transactions A","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142223426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modulating Phase Constitution and Copper Microsegregation for FeCoNiCuAl High-Entropy Alloy by Optimized Ultrasonic Solidification 通过优化超声凝固调节铁钴镍铜铝高熵合金的相结构和铜微偏析
Metallurgical and Materials Transactions A Pub Date : 2024-09-12 DOI: 10.1007/s11661-024-07581-8
X. Wang, J. Y. Wang, R. H. Xiao, W. Zhai, B. Wei
{"title":"Modulating Phase Constitution and Copper Microsegregation for FeCoNiCuAl High-Entropy Alloy by Optimized Ultrasonic Solidification","authors":"X. Wang, J. Y. Wang, R. H. Xiao, W. Zhai, B. Wei","doi":"10.1007/s11661-024-07581-8","DOIUrl":"https://doi.org/10.1007/s11661-024-07581-8","url":null,"abstract":"<p>The introduction of one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) ultrasounds into solidifying FeCoNiCuAl high-entropy alloy was efficiently optimized, which realized the maximum input of acoustic energy and the effective adjustment of the energy proportion between stable and transient cavitation effects. In addition to the ordinary advantage of grain refinement, the superiority of power ultrasound in modulating such Cu-containing high-entropy alloys with dendritic structures mainly lay in the significant regulation of phase volume fraction and the elimination of severe Cu element microsegregation. As the main energy transmission form under 1D ultrasound, stable cavitation slightly increased the nucleation rate of <i>α</i> and <i>γ</i><sub>1</sub> phases, which jointly contributed to suppressing the Cu solute enrichment from 41.6 to 36 at pct through the acoustic streaming during the subsequent growth of <i>γ</i><sub>1</sub> phase. When 2D and 3D ultrasounds were applied, the intensive transient cavitation dominated the solidification process. The induced local high undercooling resulted in the competitive nucleation and growth between <i>α</i> and <i>γ</i><sub>1</sub> phases, leading to the more than one order of magnitude reduction in their grain sizes and the significant rise of <i>γ</i><sub>1</sub> phase volume fraction from 13 up to 50 pct. Meanwhile, it strikingly reduced the final Cu content difference between these two phases from over 30 to around 3.8 at pct by decreasing the Cu composition in competitively formed <i>γ</i><sub>1</sub> nuclei. The above microstructure modification brought in excellent compressive property for 3D ultrasonically solidified alloy, whose strength and ductility were simultaneously enhanced by 27 and 24 pct.</p>","PeriodicalId":18504,"journal":{"name":"Metallurgical and Materials Transactions A","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142177012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deconstructing the Retained Austenite Stability: In Situ Observations on the Austenite Stability in One- and Two-Phase Bulk Microstructures During Uniaxial Tensile Tests 解构保留奥氏体稳定性:在单轴拉伸试验中对一相和两相块状微结构中奥氏体稳定性的现场观察
Metallurgical and Materials Transactions A Pub Date : 2024-09-12 DOI: 10.1007/s11661-024-07569-4
Joshua Kumpati, Manon Bonvalet Rolland, Sk. Md. Hasan, Katherine S. Shanks, Peter Hedström, Annika Borgenstam
{"title":"Deconstructing the Retained Austenite Stability: In Situ Observations on the Austenite Stability in One- and Two-Phase Bulk Microstructures During Uniaxial Tensile Tests","authors":"Joshua Kumpati, Manon Bonvalet Rolland, Sk. Md. Hasan, Katherine S. Shanks, Peter Hedström, Annika Borgenstam","doi":"10.1007/s11661-024-07569-4","DOIUrl":"https://doi.org/10.1007/s11661-024-07569-4","url":null,"abstract":"<p>Given the critical role that metastable retained austenite (RA) plays in advanced high-strength steel (AHSS), there is significant interest in obtaining a comprehensive understanding of its stability, to achieve excellent mechanical properties. Despite considerable attention and numerous studies, the significance of individual contributions of various microstructural factors (size, crystallographic orientation, surrounding phases, <i>etc</i>.) on the stability of RA remain unclear, partly due to the difficulty of isolating the direct effects of these factors. In this study, we examined the influence of microstructural factors while minimizing the effect of chemical composition on the mechanical stability of RA. We accomplished this by comparing the austenite (γ) stability in two distinct microstructures: a two-phase RA/martensite microstructure and a one-phase γ microstructure, both with nearly identical γ compositions. We employed <i>in situ</i> high-energy X-ray diffraction during uniaxial tensile testing conducted at both room temperature and 100 °C, facilitating the continuous monitoring of microstructural changes during the deformation process. By establishing a direct correlation between the macroscopic tensile load, phase load partitioning, and the γ/RA transformation, we aimed to understand the significance of the microstructural factors on the mechanical stability of the RA. The results indicate that very fine RA size and the surrounding hard martensitic matrix (aside from contributing to load partitioning) contribute less significantly to RA stability during deformation than expected. The findings of this study emphasize the critical and distinct influence of microstructure on γ/RA stability.</p>","PeriodicalId":18504,"journal":{"name":"Metallurgical and Materials Transactions A","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142177011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Role of Microstructure Evolution During Welding on Mechanical Properties and Residual Stresses of the Inconel 718 and Austenitic Stainless Steel 304L Dissimilar Weld Joint 焊接过程中的微观结构演变对铬镍铁合金 718 和奥氏体不锈钢 304L 异种焊接接头机械性能和残余应力的影响
Metallurgical and Materials Transactions A Pub Date : 2024-09-11 DOI: 10.1007/s11661-024-07571-w
Niraj Kumar, Prakash Kumar, Ravi Shanker Vidyarthy, Chandan Pandey
{"title":"Role of Microstructure Evolution During Welding on Mechanical Properties and Residual Stresses of the Inconel 718 and Austenitic Stainless Steel 304L Dissimilar Weld Joint","authors":"Niraj Kumar, Prakash Kumar, Ravi Shanker Vidyarthy, Chandan Pandey","doi":"10.1007/s11661-024-07571-w","DOIUrl":"https://doi.org/10.1007/s11661-024-07571-w","url":null,"abstract":"<p>For this study, the researchers aimed to dissimilar weld the Nickel-based superalloy Inconel 718 (IN 718) with austenitic stainless steel 304L (ASS 304L) using the gas tungsten arc welding (GTAW) technique and Nickel-based filler IN 82 (ERNiCr-3). In order to examine the weld microstructures, we utilized optical microscopy (OM) and field emission scanning electron microscopy (FESEM) with energy-dispersive spectroscopy (EDS) to identify any segregation present in various weld zones. Through optical and FESEM analyses, it was revealed that the base metals (BM) exhibit an austenitic character. The IN 718 BM matrix contains dispersed <i>γ</i>′ and <i>γ</i>″ strengthening precipitates within the Nickel matrix. On the other hand, the ASS 304L BM displayed a unique austenitic microstructure characterized by twins features. The weld metal exhibited solidification grain boundaries (SGBs), migrated grain boundaries (MGBs), and distinct dendritic microstructures that had an impact on the properties of the weld. Through extensive analysis and mapping of the IN 82 weld zone, it was discovered that interdendritic regions contain carbides of Nb, Cr, and Ti. In addition, there were Unmixed zone (UZ) areas between the IN 82 filler and the base materials on both sides of the weld zone, appearing as islands and beaches. The texture of the different weld zones was evaluated using electron backscattered diffraction (EBSD) analysis. Additionally, the presence of a notable level of strain within the weld metal grains was observed through Kernel average misorientation (KAM) micrographs. Fractures were observed in the IN 82 weld zone, indicating that it is the weakest area in the IN 718/ASS 304L dissimilar weld at room temperature, according to the outputs of the tensile tests. The micro-hardness profile showed substantial hardness values in the weld zone, which can be attributed to the appearance of a diverse microstructure and additional precipitates. At room temperature, the recorded average tensile strength of the dissimilar weld joint was 626 MPa. In addition, experiments were carried out at high temperatures of 550 °C, 600 °C, and 650 °C to measure the tensile strength. In the high-temperature tensile tests, it was observed that the IN 82 weld zone exhibited higher tensile strength compared to the ASS 304L BM. Interestingly, the high temperatures tensile specimens failed in the 304L BM. The Charpy impact toughness test was performed with notches at ASS 304L HAZ, IN 718 HAZ, and the weld center. Using the deep hole drilling (DHD) technique, we were able to quantify residual stress and identify the location of the highest tensile residual stress, which was found to be 3 mm from the weld surface.</p>","PeriodicalId":18504,"journal":{"name":"Metallurgical and Materials Transactions A","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142177013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Recrystallization Nucleation Mechanism for a Low-Level Strained 316L Stainless Steel and Its Implication to Twin-Induced Grain Boundary Engineering 低水平应变 316L 不锈钢的再结晶成核机制及其对孪晶诱导晶界工程的影响
Metallurgical and Materials Transactions A Pub Date : 2024-09-11 DOI: 10.1007/s11661-024-07548-9
Qinqin He, Shuang Xia, Qin Bai, Yong Zhang, Lijiang Li
{"title":"The Recrystallization Nucleation Mechanism for a Low-Level Strained 316L Stainless Steel and Its Implication to Twin-Induced Grain Boundary Engineering","authors":"Qinqin He, Shuang Xia, Qin Bai, Yong Zhang, Lijiang Li","doi":"10.1007/s11661-024-07548-9","DOIUrl":"https://doi.org/10.1007/s11661-024-07548-9","url":null,"abstract":"<p>The thermal-mechanical processing (TMP) for twin-induced grain boundary engineering (GBE) generally adopts a small amount of cold deformation and subsequent annealing at solution temperature of austenitic stainless steels. The nucleation mechanism during the TMP of GBE is essential to the understanding of the evolution of grain boundary character distribution (GBCD). The mechanism for recrystallization nucleation is investigated in a 316L austenitic stainless steel which was subjected to short-time annealing at solution-annealing temperature after 5–10 pct tensile deformation. A total of 22 recrystallization nuclei were found, and the analyzing of the orientation relationships between the nuclei and nearby deformed grains revealed that most of the nuclei are formed following the strain-induced boundary migration (SIBM) mechanism. The formation of highly twinned grain-clusters as the typical feature of GBE microstructure is a result of extensive multiple twinning starting from every single nucleus. Low nucleation density is more important than how the nucleus forms during GBE. A portion of the recrystallization front boundaries outside the clusters expanded into the deformation microstructure more extensively than the others. However, the growth advantage does not have an obvious correlation with the misorientation of these recrystallization front boundaries.</p>","PeriodicalId":18504,"journal":{"name":"Metallurgical and Materials Transactions A","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142223427","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of Crystal Orientation on Freckle Formation in Single Crystal Heavy-Plate Castings 晶体取向对单晶重板铸件中雀斑形成的影响
Metallurgical and Materials Transactions A Pub Date : 2024-09-11 DOI: 10.1007/s11661-024-07575-6
Weiguo Jiang, Dongyu Han, Lin Dong, Kaiwen Li, Xiangbin Meng, Qiang Li
{"title":"Influence of Crystal Orientation on Freckle Formation in Single Crystal Heavy-Plate Castings","authors":"Weiguo Jiang, Dongyu Han, Lin Dong, Kaiwen Li, Xiangbin Meng, Qiang Li","doi":"10.1007/s11661-024-07575-6","DOIUrl":"https://doi.org/10.1007/s11661-024-07575-6","url":null,"abstract":"<p>The effect of the crystal orientation on freckle formation has been investigated in single crystal Ni-base superalloy heavy-plate castings. Single crystal superalloy heavy-plate castings grown along the &lt;001&gt; , &lt;011&gt; and &lt;111&gt; crystallographic orientations were prepared by the bottom seeding technique and Bridgman method. Optical microscopy (OM) and scanning electron microscopy (SEM) were employed to observe the microstructure, and electron backscatter diffraction (EBSD) was used to characterize the crystallographic orientation of the castings. The morphology of the mushy zone during directional solidification was simulated by ProCAST finite element software. The experimental results show that the space between primary dendrites at the (010) crystal plane of &lt;011&gt; oriented plate casting and the (100) crystal plane of &lt;111&gt; oriented plate casting is wider than that at the same corresponding crystal plane of &lt;001&gt; oriented plate casting. The occurrence of freckles depends not only on orientation but also on dendrite morphology. Compared with orientation, the freckle is more sensitive to dendrite morphology and the space between primary dendrites of the single crystal plates. The freckle formation tendency of the &lt;001&gt; orientation casting was the weakest among the three crystal orientation castings, and the reason for this tendency was discussed.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\u0000","PeriodicalId":18504,"journal":{"name":"Metallurgical and Materials Transactions A","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142177014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the Development of a Heat Treatment for Inconel Alloy X-750 Produced Using Laser Powder Bed Fusion 利用激光粉末床熔融技术生产的铬镍铁合金 X-750 的热处理开发
Metallurgical and Materials Transactions A Pub Date : 2024-09-11 DOI: 10.1007/s11661-024-07589-0
G. M. Volpato, A. S. P. Pereira, M. C. Fredel, U. Tetzlaff
{"title":"On the Development of a Heat Treatment for Inconel Alloy X-750 Produced Using Laser Powder Bed Fusion","authors":"G. M. Volpato, A. S. P. Pereira, M. C. Fredel, U. Tetzlaff","doi":"10.1007/s11661-024-07589-0","DOIUrl":"https://doi.org/10.1007/s11661-024-07589-0","url":null,"abstract":"<p>The substantial development that the additive manufacturing technique of powder bed fusion using a laser beam (PBF-LB) underwent in the past decades, though expressive, has been restricted to particular materials and applications. When coming to Ni-based superalloys, the technology has been mostly developed regarding a few polycrystalline Ni–Cr–Fe and Ni–Cr alloys, particularly Inconel 718 and 625. However, when produced using PBF-LB, these materials should undergo tailored heat treatment sequences to adjust its microstructure to industrial standards, which must be developed according to the behavior of each particular alloy. In view of such restrictiveness, this study assessed 77 experimental heat treatments for PBF-LB Inconel X-750, an alloy with comparatively limited research volume when considering additive manufacturing, aiming at providing guidelines for its post-processing after PBF-LB manufacturing. These heat treatments were based on the standard ASM 5668 sequence for maximization of creep resistance, and, contradicting the known precipitation behavior of the conventional material, often resulted in coarse precipitation of detrimental bulk η-Ni<sub>3</sub>Ti intermetallic phases. This indicates insufficient chemical homogenization after heat treatment, evidencing a different microstructural response of the material when processed using PBF-LB and the importance of optimizing the post-processing of such materials.</p>","PeriodicalId":18504,"journal":{"name":"Metallurgical and Materials Transactions A","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142177016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hydrogen Diffusion in Al–Si-Coating Layer of Press-Hardening Steel 压力硬化钢铝硅涂层中的氢扩散
Metallurgical and Materials Transactions A Pub Date : 2024-09-10 DOI: 10.1007/s11661-024-07574-7
Dae Geon Lee, Ji Hoon Kim, Yeonseung Jung, Dong-Woo Suh
{"title":"Hydrogen Diffusion in Al–Si-Coating Layer of Press-Hardening Steel","authors":"Dae Geon Lee, Ji Hoon Kim, Yeonseung Jung, Dong-Woo Suh","doi":"10.1007/s11661-024-07574-7","DOIUrl":"https://doi.org/10.1007/s11661-024-07574-7","url":null,"abstract":"<p>We examined the hydrogen diffusion behavior in the Al–Si-coating layer which underwent the press-hardening simulation. The microstructure evolution, in particular, the type of intermetallic compounds, was revealed to have a remarkable influence on the hydrogen absorption. It was found that the formation of AlFe in the coating layer was advantageous regarding to the suppression of hydrogen penetration across the coating layer, which was originating from the lower hydrogen diffusivity compared to the Al<sub>5</sub>Fe<sub>2</sub>.</p>","PeriodicalId":18504,"journal":{"name":"Metallurgical and Materials Transactions A","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142223429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Physical and Mechanical Characterization of Ti50Ni(50−X)FeX Shape Memory Alloy Fabricated by Spark Plasma Sintering Process 利用火花等离子烧结工艺制造的 Ti50Ni(50-X)FeX 形状记忆合金的物理和机械特性分析
Metallurgical and Materials Transactions A Pub Date : 2024-09-10 DOI: 10.1007/s11661-024-07562-x
Jagadish Parida, Subash Chandra Mishra, Deepak Kumar Satapathy, Kishore Kumar Behera, Ajit Behera
{"title":"Physical and Mechanical Characterization of Ti50Ni(50−X)FeX Shape Memory Alloy Fabricated by Spark Plasma Sintering Process","authors":"Jagadish Parida, Subash Chandra Mishra, Deepak Kumar Satapathy, Kishore Kumar Behera, Ajit Behera","doi":"10.1007/s11661-024-07562-x","DOIUrl":"https://doi.org/10.1007/s11661-024-07562-x","url":null,"abstract":"<p>NiTi smart alloys are known for their characteristic shape memory behavior. The current work focuses on the physical and mechanical characterization of Ni<sub>(50−<i>X</i>)</sub>Ti<sub>50</sub>Fe<sub><i>X</i></sub> shape memory alloys prepared by the spark plasma sintering (SPS) process and their dependence on the concentration of Fe. The physical characterization of the samples confirmed the presence of the FeNiTi phase along with the Ti- and Ni-rich phases. Enhanced mechanical properties were observed in 8 at. pct Fe samples, which contained secondary intermetallic phases such as Ti<sub>2</sub>Ni, Ni<sub>3</sub>Ti, Fe<sub>2</sub>Ti, and Ni<sub>4</sub>Ti<sub>3</sub>. Higher fraction of NiTi phase in the 8 at. pct Fe sample resulted in better shape memory properties while showing a higher friction coefficient. Ball on disk wear tests were done to identify the mechanisms contributing to the wear in the sintered sample. It is observed that the abrasive wear as well as the adhesive wear are the most prominent contributors for the surface material removal, and the dependence of characterization is observed with the variation of Fe content in NiTiFe alloy.</p>","PeriodicalId":18504,"journal":{"name":"Metallurgical and Materials Transactions A","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142177036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Upscale Production and Characterization of the Cr40Co30Ni30 Multiprincipal Element Alloy Cr40Co30Ni30 多主元素合金的大规模生产和特性分析
Metallurgical and Materials Transactions A Pub Date : 2024-09-09 DOI: 10.1007/s11661-024-07570-x
Vinícius Pereira Bacurau, Vitor Deghaid Pereira, Eric Marchezini Mazzer, Kester Clarke, Guilherme Zepon, Francisco Gil Coury
{"title":"Upscale Production and Characterization of the Cr40Co30Ni30 Multiprincipal Element Alloy","authors":"Vinícius Pereira Bacurau, Vitor Deghaid Pereira, Eric Marchezini Mazzer, Kester Clarke, Guilherme Zepon, Francisco Gil Coury","doi":"10.1007/s11661-024-07570-x","DOIUrl":"https://doi.org/10.1007/s11661-024-07570-x","url":null,"abstract":"<p>Multiprincipal Element Alloys (MPEAs) represent a new category of metallic alloys that stand out for exclusively containing solute elements in equiatomic/nearly equiatomic proportions in their composition. Due to their remarkable mechanical properties, these alloys have garnered significant interest within the scientific community. However, one of the major challenges associated with these alloys is their industrial-scale production. Therefore, this study aims to evaluate production and processing routes for obtaining MPEAs on an upscale, <i>i.e.</i>, with masses on the order of several kilograms. To achieve this goal, we produced the Cr<sub>40</sub>Co<sub>30</sub>Ni<sub>30</sub> alloy (at. pct) using a vacuum induction furnace (VIM), resulting in ~ 50-kg ingots. Subsequently, the samples underwent hot forging and rolling processes, followed by analyses of composition and inclusion formation. The presence of Cr and Al oxide inclusions in the samples was observed in both samples. The composition remained homogeneous throughout the ingot’s cross-section. However, the forging process proved ineffective and resulted in several cracks during the procedure. On the other hand, hot rolling proved a more viable process, also promoting dynamic recrystallization, although crack formations also occurred. In both processes, as well as in the casting, the formation of the sigma phase was not observed.</p>","PeriodicalId":18504,"journal":{"name":"Metallurgical and Materials Transactions A","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142177015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信